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Abstract

Seven protein structure comparison methods and two sequence comparison programs were evaluated on
their ability to detect either protein homologs or domains with the same topology (fold) as defined by the
CATH structure database. The structure alignment programs Dali, Structal, Combinatorial Extension (CE),
VAST, and Matras were tested along with SGM and PRIDE, which calculate a structural distance between
two domains without aligning them. We also tested two sequence alignment programs, SSEARCH and
PSI-BLAST. Depending upon the level of selectivity and error model, structure alignment programs can
detect roughly twice as many homologous domains in CATH as sequence alignment programs. Dali finds
the most homologs, 321–533 of 1120 possible true positives (28.7%–45.7%), at an error rate of 0.1 errors
per query (EPQ), whereas PSI-BLAST finds 365 true positives (32.6%), regardless of the error model. At
an EPQ of 1.0, Dali finds 42%–70% of possible homologs, whereas Matras finds 49%–57%; PSI-BLAST
finds 36.9%. However, Dali achieves >84% coverage before the first error for half of the families tested.
Dali and PSI-BLAST find 9.2% and 5.2%, respectively, of the 7056 possible topology pairs at an EPQ of
0.1 and 19.5, and 5.9% at an EPQ of 1.0. Most statistical significance estimates reported by the structural
alignment programs overestimate the significance of an alignment by orders of magnitude when compared
with the actual distribution of errors. These results help quantify the statistical distinction between analogous
and homologous structures, and provide a benchmark for structure comparison statistics.

Keywords: structure alignment; database search; statistical significance; CATH database

Pairwise comparison of protein molecules is fundamental to
modern biological research. If two proteins share signifi-
cantly more similarity with regard to some characteristic
(e.g., amino acid sequence) than is expected by chance, the
most parsimonious explanation is that they descended from
a common precursor (they are homologous) and thus are
likely to share other similarities as well. The most com-
monly compared features are a protein’s sequence and its
three-dimensional structure, although other features, such as
function, ligand(s), the location of specific conserved resi-
dues, the location of specific cofactors or posttranslational

modifications, subcellular localization, phyletic profile (i.e.,
the pattern of organisms in which the protein is present or
absent), or the expression profile of the protein can also be
compared.

There are three general steps in protein comparison: (1)
deciding what feature to compare, (2) deciding how to com-
pare the chosen feature, and (3) determining whether the
feature exhibits an excess of similarity compared to chance.
In the case of sequence comparison, these are all fairly
straightforward decisions. The simplest feature to compare
is the linear sequence of the 20 naturally occurring amino
acids. Sequence comparison typically involves sequence
alignment (Smith and Waterman 1981; Pearson and Lipman
1988; Altschul et al. 1997), attempting to maximize the
correspondence of identical residues while minimizing the
number of gaps inserted, although other methods have been
described (Wu et al. 1996). There is a well-established theo-
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retical (Karlin and Altschul 1990) and empirical (Mott
1992; Altschul and Gish 1996; Brenner et al. 1998; Pearson
1998) basis for estimating the probability of a local align-
ment score occurring by chance. In contrast, the comparison
process is more complicated with three-dimensional protein
structures. One can compare the coordinates of C� atoms,
secondary structure elements (SSEs), or internal mappings
such as a contact map or distance matrix. There are multiple
algorithms for comparing each of these features, and one
can combine different features in a single comparison algo-
rithm. The structures being compared are models that best
fit experimental data, and therefore have varying degrees of
precision, accuracy, and dependence upon the experimental
conditions (e.g., salt, pH, crystal packing, etc.) Finally, there
is no clear statistical definition of what constitutes an ex-
cessive amount of similarity. This is due largely to three
circumstances: (1) The range of protein structures appears
far more constrained by chemical and physical forces than
the range of sequences, (2) there is no definition of an
optimal three-dimensional alignment, and (3) it is difficult
to specify a “random” protein structure, and it is difficult to
compare very different protein structures (e.g., all-� versus
all-�). The uncertainty regarding the range of possible pro-
tein structures and the lack of a mathematical definition for
“random” structures inhibits a theoretical understanding of
how likely it is for two proteins to independently end up
with similar structures (which is extremely unlikely in the
case of sequences), whereas the lack of an optimal align-
ment definition inhibits efforts to empirically determine the
distribution of structural similarity scores and to compare
different methods (for reviews, see Eidhammer et al. 1999,
Koehl 2001).

The above complications notwithstanding, comparison of
protein structures has been of great interest since the first
two atomic resolution structures of myoglobin and hemo-
globin were determined (Kendrew et al. 1960; Perutz et al.
1960). Protein structures offer a great deal of information
about protein function, evolution, and the fascinating prob-
lem of how the three-dimensional structure is imbedded in
the one-dimensional sequence (the protein folding prob-
lem). It is only recently, however, that enough protein struc-
tures have become available to enable large-scale compari-
sons of protein structures. In the future, high-throughput
methods will produce even larger numbers of protein struc-
tures, many of which will have unknown functions and/or
evolutionary relationships (Brenner and Levitt 2000). Thus,
a better understanding of protein tertiary structure alignment
statistics should allow more accurate classification of pro-
teins, and may provide more quantitative insights into the
balance of homology (descent from a common ancestor)
and analogy (chance similarity due to convergence). In ad-
dition, because the process of obtaining the three-dimen-
sional structure of a protein via X-ray crystallography or
NMR is so laborious and expensive compared to computer-

based structure predictions, structure prediction will be-
come increasingly important as the predictions become
more accurate (Marti-Renom et al. 2000; Vitkup et al.
2001). Comparison of protein structures is crucial for evalu-
ating the accuracy of predictions, and by extension for in-
creasing their performance (Moult et al. 2001). Finally, ter-
tiary structure comparison is essential to elucidating the
relationships between protein sequence change and the
resulting changes in structure and function throughout
evolution.

Both sequence and structure comparison methods are
confounded by protein domains. Because many proteins are
made up of multiple unrelated domains that have been
spliced together into one polypeptide, biologists usually
break proteins into their constituent domains. This can be
done based upon sequence, structure, or both. Several do-
main-based structural databases were created in recent
years, which organize the data from the Protein Data Bank
(PDB; Berman et al. 2000) in various ways. The most popu-
lar of these secondary databases are Structural Classifica-
tion of Proteins (SCOP; Murzin et al. 1995), CATH (which
stands for Class, Architecture, Topology, and Homology;
Orengo et al. 1997), and FSSP (which stands for Families of
Structurally Similar Proteins; Holm and Sander 1998). The
first two are hierarchical databases, which first break the
protein structures in the PDB into domains, then classify the
domains into groups with common secondary structure
components (Class in SCOP and CATH), common arrange-
ment (Architecture in CATH) and topology of secondary
structure elements (fold in SCOP or Topology in CATH),
and homologous superfamilies (superfamily in SCOP and
Homologous family in CATH) and sequence families
(both). FSSP consists of comparisons between all the pro-
tein chains in the PDB, but no specific hierarchy is assigned.
We chose CATH as a standard because it is more automated
in its classification procedure than SCOP, and it has explic-
itly defined sequence and structure-based criteria for assign-
ing homology, which both SCOP and FSSP lack.

Here we evaluate various structure comparison algo-
rithms and scoring schemes in their abilities to detect Ho-
mologs and Topologs (domains with the same Topology, or
T, designation) as defined by CATH (we use capital letters
to distinguish the specific Homologs/Topologs as defined
by CATH from the general reference to truly homologous
proteins, which may or may not coincide with the CATH
definitions). The performance of the methods varies widely.
For structure alignment, statistical measures of structural
similarity calculated by the programs moderately outper-
form root-mean-square distance (RMSD)-based scores. Our
statistical analysis seeks to quantify the difficulty of distin-
guishing homology and analogy based upon pairwise struc-
tural comparison alone. Most importantly for the issue of
reliably identifying distant homologs, with the exception of
statistical estimates derived from Dali Z-scores, the statis-

Sierk and Pearson

774 Protein Science, vol. 13



tics provided by structure comparison programs greatly
overstate the significance of structural alignments.

Results

We created a nonredundant subset of CATH (see Materials
and Methods), and selected a single member from each of
86 families to serve as a query. This was done instead of
doing an all-versus-all comparison, both to reduce compu-
tational requirements and to mitigate the high redundancy
found in the PDB: We did not want the results to be domi-
nated by the structural family members that are most over-
represented in the PDB, such as the globins or immuno-
globulins. Each query was compared to each member of the
library using five different structural superposition pro-
grams (Dali, Holm and Sander 1996; Structal/LSQMAN,
Kleywegt 1996 and Levitt and Gerstein 1998; CE, Shindya-
lov and Bourne 1998; VAST, Madej et al. 1995; and Matras,
Kawabata and Nishikawa 2000). For comparison, we also
used two sequence comparison programs (SSEARCH, Pear-
son 1991; PSI-BLAST, Altschul et al. 1997). In addition,
we tested two measures of protein structural similarity that
calculate a structural distance between the two domains but
do not align them (SGM, Rogen and Fain 2003; PRIDE,
Carugo and Pongor 2002).

Two characteristics of a search algorithm are important
when searching a database: sensitivity and selectivity. A
more sensitive algorithm will find a larger percentage of the
total number of true positives, or homologs in the database,
at a given threshold of statistical significance or false posi-
tives. A more selective algorithm will find a smaller number
of false positives, or nonhomologs that receive high simi-
larity scores to the query, at a given threshold of coverage.
Generally there is a trade-off between these two character-
istics, such that improving the performance of one degrades
the performance of the other.

Errors per Query versus Coverage

To present sensitivity and selectivity simultaneously, we
plotted Errors per Query (EPQ) versus Coverage curves,
which are similar to receiver operating characteristic (ROC)
curves (Gribskov and Robinson 1996), as described in the
Materials and Methods section. The Errors versus Coverage
curves show how much coverage is obtained at a given error
level, or the sensitivity (the number of true positives de-
tected) at a given level of selectivity (the number of false
positives detected). Figure 1A shows the EPQ versus Cov-
erage for seven of the methods (the PRIDE score performed
worse than the SGM score and was left off of the plots) in
detecting CATH Homologs. At an error level of 0.1 EPQ,
which corresponds to ∼ 8 false positives, PSI-BLAST shows
the best coverage, identifying 32.6% of the 1120 possible

hits. Dali is the next best, with 28.7% coverage. The SGM
algorithm, which does not align the protein domains, has the
lowest coverage at all error rates. At an EPQ of 1.0, Matras
is the best performer, with 49% coverage, slightly ahead of
Dali and Structal at ∼ 45%; PSI-BLAST has 36.9% cover-
age.

EPQ or ROC curves can be misleading if some homolo-
gous proteins are misidentified as nonhomologous, and thus
counted as false positives. CATH has fairly stringent criteria
for assigning homologous relationships (Orengo et al.
1997), and some structural alignments that were labeled
false positives, and thus contributed to the “error” axis, may
be homologs that CATH had placed into a different H clas-
sification. To reduce the effect of misclassification of ho-
mologs, we also plotted EPQ versus Coverage when hits to
members of the same Topology classification were not
counted as errors (Fig. 1B). This changes the absolute
amount of coverage, more homologs are found with fewer
errors, but it only moderately changes the relative perfor-
mance of the different structure comparison methods (Dali
performs better relative to Matras and Structal, and VAST
improves with respect to the other methods). Dali now finds
the most homologs at 0.1 EPQ (45.7%), whereas PSI-
BLAST finds 32.8%. At an EPQ of 1, the structure/se-
quence difference is even more pronounced, with Dali find-
ing 70% of the possible homologs whereas PSI-BLAST
finds 36.5%.

We also looked at the ability of the programs to detect
members of the same CATH Topology (T) group, which we
call Topologs (Fig. 1C). This avoids the problem of homo-
log misclassification; we expect that non-Topologs are
much more likely to be unrelated than non-Homologs in the
CATH classification. Dali finds the most Topologs at an
EPQ of 0.1, finding 9.2% of the 7056 total Topolog pairs,
whereas PSI-BLAST identified only about 5% of Topologs.
All of the structural alignment methods improve relative to
PSI-BLAST at low EPQ; VAST in particular improves dra-
matically, going from one of the worst methods at detecting
CATH Homologs to one of the best at detecting Topologs
(although VAST and PSI-BLAST have very similar perfor-
mance at 0.1 EPQ). CE and SGM still perform worse than
PSI-BLAST until EPQ >1. Most of the improvement in
performance reflects reduced errors per query early in the
EPQ plot, which are due to high-scoring alignments to
structures in a different Homology class. When both Ho-
mology matches and Homology errors are excluded from
the EPQ calculation (Fig. 1D), showing the ability to detect
Topologs that are not Homologs, none of the methods do
very well, but VAST and Dali perform best.

In their paper on the Structal method, Levitt and Gerstein
(1998) reported a coverage of 29.8% (627/2107) at an error
rate of 1%, or an EPQ of 0.01. They used a library of 941
domains from the SCOP database and performed an all-
versus-all comparison. They used pairs sharing the same
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SCOP superfamily as their set of true positives (roughly
analogous to Homolog pairs in CATH), but counted as er-
rors only pairs not in the same Fold category (roughly the
same as the Topology classification in CATH). This is
analogous to our Figure 1B, and we see similar perfor-
mance—27.8% coverage (311/1120) at an EPQ of 0.01.

EPQ versus Coverage curves can be distorted due to poor
performance by one or two queries, if those queries produce
many errors at low coverage levels. Thus we examined the
performance of the methods with individual queries. Figure
2, A and C show the level of coverage generated by the
median query (43 queries performed better, 43 worse) at the
1st, 3rd, 10th, 30th, and 100th false positive for Homologs
and Topologs. To compare these results with those shown in
Figure 1, we also grouped the queries into nine sets by query
length (shortest to longest) and plotted the coverage ob-
tained by the median set at 0.1, 0.3, and 1.0 EPQ (see
Materials and Methods). Figure 2, B and D show the same
results for the 25th percentile (i.e., 21 of the queries have

better coverage and 65 have worse coverage). (For EPQ < 1,
the 25th percentile corresponds to the second-lowest level
of coverage of the nine groupings.)

Comparison of Figures 1 and 2 shows that the relative
performance of the different methods does not change ap-
preciably. However, absolute performance does change sig-
nificantly for the structural comparison programs when each
family is considered independently. For Dali, half of the
queries obtain a coverage of ∼ 85% or better before gener-
ating the first false positive, and half reach 100% coverage
before the third false positive. The discontinuity between
the upper and lower parts of Figure 2A shows that grouping
different families together by length of query greatly affects
the median amount of coverage. This implies that there is no
clear correspondence between family length and selectivity
(i.e., the amount of coverage generated at one false posi-
tive). There is also no clear correspondence between selec-
tivity and the number of family members, nor between the
rankings of the different methods (data not shown).

Figure 1. Errors per Query vs. Coverage plots for eight of the nine methods tested (PRIDE data not shown). (A) CATH Homolog set
of true positives. (B) CATH Homolog set of true positives, but only non-Topologs are false positives. (C) CATH Topolog (same
Topology) set of true positives, non-Topolog false positives. (D) Non-Homolog CATH Topolog set of true positives, non-Topolog false
positives. The sequence alignment programs are shown with dashed lines; the structural comparison programs, with solid lines.
Programs using Z-scores as the scoring criterion have open symbols; those using E()-values have filled symbols. Symbols are shown
at every 200th point.
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Evaluation of errors

We investigated the nature of the first 100 errors made by
the different algorithms. For 93 of the first 100 errors that
Dali makes in finding Homologs, the query and target have
the same Topology; Structal and VAST have 85 and 92
errors with the same Topology, respectively, whereas Ma-
tras has 67 and CE has 43. Thus, the homology “errors”
generated by the structural alignment programs are topo-
logically similar, and may, in fact, be misclassified ho-
mologs. In contrast, SSEARCH has seven errors with the
same topology, similar to the number (three) one would
expect if the errors were randomly distributed among to-
pologies. PSI-BLAST has 22 errors with the same topology,
suggesting that PSI-BLAST may also be recognizing mis-
classified Homologs.

The programs show distinct differences in their misclas-
sifications according to structural class. In our library of
2771 domains, there are 586 (21%) all �-helix (CATH class
1) domains, 720 (26%) all �-sheet domains (class 2), 1384
(50%) mixed �/� (class 3) domains, and 82 (3%) little
secondary structure (class 4) domains; the queries follow a
similar distribution—23%, 29%, 48%, and 0% for classes 1,
2, 3, and 4, respectively. Table 1 shows the CATH Class of
the query for the top 100 errors for six of the eight methods
tested. In detecting Homologs, the PSI-BLAST and
SSEARCH errors approximate the expected distribution if
the errors were randomly distributed among the three
Classes, but errors in four of the structural alignment pro-
grams are biased. Dali, Structal, and VAST are biased to-
wards errors in the �/� Class, whereas CE is biased towards
errors in the all-� Class. The interesting exception is Ma-
tras, which has errors evenly distributed among the three
classes, with only a slight bias towards the � class.

Equivalence scores

An alternative way to evaluate the performance of a method
is to calculate the equivalence number (Pearson 1995) for

each query. The equivalence number is the point at which
the number of false positives is equal to the number of false
negatives. One records the number of false positives at this
point, not the reported score, as different methods have
different scoring schemes. Thus, when a method performs
perfectly, finding all of the family members before finding
any nonfamily members, it will receive an equivalence
score of 0 for that family.

We calculated the equivalence score for each of the 86
queries for each method, and then tabulated which method
had a better (lower) equivalence score. Tables 2A and 2B
show the results of a binomial distribution sign test per-
formed between different methods over the 86 families. The
sign-test results (Table 2A) show that Dali performs signifi-
cantly better than each of the other approaches and gener-
ally support (Table 2B) the same pattern shown in the EPQ
versus Coverage plots (Dali > Matras > Structal > CE >
VAST > PSI-BLAST > SSEARCH > SGM). The notable
exception is SGM, which performs worse than SSEARCH
on the Errors versus Coverage plots, but the same in the
equivalence test. This indicates that the overall performance
of the methods is not greatly affected by extremely poor or
excellent performance on a small number of protein fami-
lies. Table 2B presents a pairwise comparison for all the
approaches; we note that our analysis is consistent with
earlier comparisons of PSI-BLAST and SSEARCH (Park et
al. 1998) which show that PSI-BLAST is significantly more
sensitive.

Alternate query set

We also checked the extent to which the performance is
affected by the specific set of queries used in these experi-
ments. To this end, we randomly selected five different sets
of 100 queries from our library and analyzed them with the
Structal method as implemented in the LSQMAN program
(Kleywegt 1996). The EPQ versus Coverage plots are
shown in Figure 3, which shows that the original data set
represents the best performance, as the curves from the
randomly selected sets generally lie to the left of the original
set. In detecting Homologs, there is considerable variation,
with the different curves crossing each other many times. At
an EPQ of 0.1, coverage ranges from 0.149 to 0.229, and at
an EPQ of 1, coverage ranges from 0.269 to 0.424. Thus, the
variation in the performance of the structure comparison
programs is similar to the variation produced by selecting
different queries. Topolog detection efficiency also varies
with the query set, but only below an EPQ of 1 (Fig. 3B).
We found a similar variation in the curves generated by
SSEARCH and PSI-BLAST with the alternative query sets
(data not shown).

For each query set, the coverage of either Homologs or
Topologs detected by each of the three methods (Structal/

Table 1. Errors by CATH class

� (21%) � (26%) �/� (50%)

H T H T H T

Structal (100) 9 36 8 6 83 58
Dali (100) 6 44 6 12 88 44
CE (95) 64 90 4 1 32 9
VAST (100) 0 5 11 4 89 91
Matras (93) 25 31 39 32 36 37
PSI-BLAST (53) 22 24 17 22 61 54
SSEARCH (37) 25 26 35 34 40 40

The CATH class of the query domain is shown for the top 100 errors in
detecting Homologs (H) and Topologs (T) for seven of the tested methods.
The percentages in the column headers are the percentage of the library in
the given class. The number of errors in which the query and target are in
the same CATH class (when detecting Homologs) is shown in parentheses
after the name of the program.
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LSQMAN, PSI-BLAST, and SSEARCH) was noted at 0.1
and 1 EPQ (data not shown). In each case, the relative
performance was the same as in the original query set (i.e.,
at 0.1 EPQ in detecting Homologs, PSI-BLAST always had

the highest coverage, followed by SSEARCH, followed by
Structal/LSQMAN), with the exception of the coverage at 1
EPQ in detecting Homologs, where either PSI-BLAST or
both PSI-BLAST and SSEARCH had higher coverage than
Structal/LSQMAN in some of the query sets.

We conclude from this that, although different sets of
queries may result in moderate differences in absolute cov-
erage levels, the relative performance of the different meth-
ods was essentially unchanged, and there were no drastic
changes in the shapes of the curves or overall performance
generated by the three methods tested with alternative query
sets. Thus, although some details might change with differ-
ent sets of queries or different target libraries (which we did
not test), the overall performances of the methods presented
here are generally indicative of their true performance.

RMSD values

The most widely used statistic in protein structure compari-
sons is the root-mean-square distance (RMSD). It has been

Table 2A. Equivalence scores comparing Dali and seven of the
eight other methods tested

Dali vs.: + − Tie Binomial P()

Matras 26 12 48 0.017
Structal 44 6 36 1.6e-8
CE 59 4 23 6.9e-14
VAST 78 4 4 0
PSI-BLAST 64 4 18 2.9e-15
SSEARCH 73 4 9 0
SGM 76 3 7 0

Plus (+), Minus (−), and Tie are the number of times that Dali had a better
(lower), worse (higher), or the same equivalence number as the method
being compared when searching for CATH Homologs. P() is the probabil-
ity, based upon a binomial distribution, that Dali and the compared method
perform equivalently.

Figure 2. Errors per Query vs. Coverage plots for individual families. (A) The median level of coverage generated by the 86 queries
is shown at a given number of errors (false positives) for CATH Homologs. (B) The same as A, except that the level of coverage is
shown at the 25th percentile (with the families ranked by percent coverage). (C,D) The same as A and B, respectively, with CATH
Topologs used as the set of true positives. The portions of the plot with EPQ <1 were made by grouping the families into groups of
10 by the length of the query (see Materials and Methods).
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known for some time that the RMSD value by itself is often
a misleading indicator of the significance of a structural
alignment, because one can achieve a very low RMSD by
aligning a small number of residues (Levitt and Gerstein
1998; Carugo and Pongor 2001). Consequently, one must
also take into account the length of the alignment. Here, we
divide the RMSD by the number of aligned residues (Nalign)
and compare the performance of this normalized RMSD
value to that of the scores reported by the five structure
alignment programs (Fig. 4). Dali and CE Z-scores do
slightly better than RMSD/Nalign, though the improvement
is small, whereas Matras Z-scores perform significantly bet-
ter than RMSD/Nalign. The performance of Structal E()-values
is indistinguishable from the RMSD scores, which is per-
haps not surprising, as it is a method based on minimizing
the distance between C� atoms, and its structural similarity
score is essentially the inverse of this distance, plus penal-
ties for gaps. Surprisingly, the VAST E()-values actually
perform worse than RMSD scores in detecting CATH Ho-
mologs, but significantly better than RMSD scores in de-
tecting Topologs. A comparison of the equivalence points
for the statistical score (E()-value or Z-score) and the
RMSD/Nalign for each method largely corroborates these
findings (data not shown); the only difference is that the
VAST E()-values and RMSD/Nalign are indistinguishable in
the equivalence point test.

Statistical reliability

Sequence comparison programs are widely used to infer
homology, or descent from a common ancestor. In general,
if a sequence in a comprehensive sequence database shares
sequence similarity that is expected <10−6–10−3 times in a
database search by chance, the most parsimonious explana-
tion is that the two sequences diverged from a common
ancestor. For tertiary structure comparison, both the defini-
tion of excess similarity and its implications are less well
understood. Often, there is some question of whether the
high similarity reflects common ancestry, or convergence to
a similar structure from independent origins (analogy).

The reliability of statistical estimates can be evaluated by
examining the estimates given in pairwise comparisons to
unrelated sequences. The sequence comparison programs,
SSEARCH and PSI-BLAST, report expectation values (E()-
values) that are quite accurate (Altschul et al. 1997; Brenner
et al. 1998; Pearson 1998). Some of the structure compari-
son programs also report probabilistic scores for their hits.
Structal and VAST report probabilities, which can be con-
verted to an E()-value by multiplying by the size of the
database. Dali, Matras, and CE report only Z-scores, which
can be converted to E()-values by assuming a distribution of
similarity scores. For Dali and Matras, we assumed that the
Z-scores were derived from an underlying extreme-value

Table 2B. Equivalence score performance for all methods

Homologs

Dali Matras Structal CE VAST PSI-BLAST SGM SSEARCH

Dali — 26/12 44/6 59/4 78/4 64/4 76/3 73/4
0.017 1.6e-8 6.9e-14 0 2.9e-15 0 0

Matras 26/8 — 31/17 52/8 70/7 62/6 72/6 72/6
0.002 0.03 2.6e-9 1.8e-14 4.1e-13 8.9e-16 8.9e-16

Structal 36/6 28/14 — 46/10 68/11 60/4 69/3 71/5
1.4e-6 0.022 6.2e/7 1.8e-11 3.7e-14 0 2.2e-16

CE 52/3 46/8 47/21 — 47/25 41/19 58/12 52/13
7.7e-13 6.9e-8 0.001 0.006 0.003 1.1e-8 5.8e-7

VAST 56/6 49/10 53/28 43/37 — 42/31 59/17 54/20
1.5e-11 1.4e-7 0.004 0.29 0.12 7.0e-7 4.8e-5

PSI-BLAST 66/2 64/6 73/2 60/14 61/17 — 43/25 39/14
0 1.2e-13 0 3.1e-8 2.8e-7 0.019 4.0e-4

SGM 73/1 67/5 72/5 59/14 67/14 28/46 — 29/28
0 3.2e-15 1.1e-16 5.1e-8 9.4e-10 0.024 0.5

SSEARCH 74/3 75/6 76/4 64/10 67/14 41/19 48/21 —
0 1/1e-16 0 4.5e-11 9.4e-10 0.003 7.8e-4

Topologs

The upper numbers are the plus (+) and minus (−) values (see Table 2A). The lower numbers are the probability, based upon the binomial distribution, that
the two methods perform equivalently. The upper half of the matrix is for the Homolog true positive set, the lower half (shaded), for the Topolog set. The
better-performing method is on the left when searching for Homologs, and on the top when searching for topologs (e.g., when searching for Homologs,
Dali has a better equivalence number than Structal in 44 families, whereas Structal has a better equivalence number in six families. When searching for
Topologs, Dali does better in 36 families, whereas Structal does better in six). The exception is PSI-BLAST vs. SGM, where PSI-BLAST does better with
Homologs, but SGM does better with Topologs.
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distribution (EVD); Z-scores can then be converted to P()
values using the formula

p�x � V� = 1 − exp� − exp� − x�� (1)

where p(x>V) is the probability of finding a score greater
than V, and V is

V =
�

�6
� Z − � (2)

where Z is the Dali Z-score and � is the Euler constant. For
CE, the authors derive their Z-scores from a normal distri-
bution (Shindyalov and Bourne 1998), which we used as
well. Pairwise-alignment probabilities were converted to

E()-values for a database search by multiplying by the size
of the database (2771). We then collected the expectation
values of the best-scoring non-Homolog or non-Topolog for
each of the 86 queries, calculated the Poisson probability of
seeing the given E()-value,

pPoisson = 1 − exp� − E� (3)

and plotted the expected versus observed (1/86, 2/86,
3/86,. . .) distribution of E()-values (Fig. 5). As has been
shown previously (Brenner et al. 1998), SSEARCH pro-
vides very accurate statistical estimates; SSEARCH E()-
values follow the ideal line almost perfectly. PSI-BLAST
also is close to the ideal line, with a small number of align-
ments with E()-values less than 0.01 (the expected lowest
E()-value within a set of 86 queries, as 1/86 ≅ 0.011). These
are all short alignments between domains that are not struc-
turally similar, and are either true non-homologs or may
reflect errors in CATH domain boundaries. After these er-
rors, the PSI-BLAST expectation values follow the ideal
line closely.

In contrast, the distribution of structural expectation val-
ues deviates considerably from the ideal line. Structal, Dali,
CE, VAST, and Matras all report E()-values that are below
the diagonal line, indicating that they tend to overestimate
the significance of a match. As seen in Figure 1, the sim-
plest explanation for these errors is misclassification of non-
Homologs. However, the pattern of E()-values for Topologs
is similar to that for Homologs, with the exception that Dali
improves significantly. Dali has only three E()-values less
than 0.01, and, although not following the ideal line as well
as SSEARCH or PSI-BLAST, comes closest to it of any of
the structural comparison methods when searching for To-
pologs. Thus, when using a more generous definition of
non-homology—non-Topology—most of the structural
comparison methods appear to overestimate statistical sig-
nificance.

Discussion

We analyzed the ability of various structural comparison
programs to detect Homologs and Topologs as defined by
the CATH database using 86 non-homologous protein fami-
lies. We chose to use 86 queries, rather than do the more
common all-versus-all comparison, to minimize the chance
of bias by large families. Large families can also bias the
results because small families contribute relatively less to
the overall coverage. To see whether this was affecting our
results, we created Errors versus Coverage plots in which
the contribution of each family to the overall coverage was
normalized for the size of the family, and we found no
substantial changes in relative performance (data not
shown).

Figure 3. Errors per Query vs. Coverage plots for five independent query
sets using the Structal method/LSQMAN program. (A) CATH Homologs
and (B) CATH Topologs as the set of true positives. The data for the
original set of queries is shown in bold.
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As pointed out by Brenner et al. (1998), there is a
chicken-and-egg problem when evaluating structure com-
parison methods—one needs a “correct” homology classi-
fication against which to measure comparison programs, yet
homology classifications are inferred from sequence and
structure comparison. Our gold-standard subset of the
CATH database is constructed with a structural alignment

program, SSAP (Orengo et al. 1997), and, as stated in the
introduction, there is no optimal alignment between two
protein structures. Thus, some of the homology assignments
may be incorrect; some proteins labeled “nonhomologous”
may share a common ancestor, and other proteins may be
labeled “homologous” because of similarity that arose by
convergence. To address some of this uncertainty, we ex-

Figure 4. Errors per Query vs. Coverage plots comparing statistical (E()-value or Z-score) scores vs. RMSD/Nalign for Structal, Dali,
CE, VAST, and Matras. (A) Structal/LSQMAN, (B) Dali, (C) CE, (D) VAST, and (E) Matras. RMSD/Nalign is shown by dashed lines;
E()-value (Structal/VAST) or Z-scores (Dali/CE/Matras), by solid lines. Homolog true positive set, open symbols; Topolog true
positive set, closed symbols. The coverage for Homologs is shown on the lower x-axis; that for Topologs is shown on the upper x-axis.
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amined four different error models (Fig. 1): (1) CATH Ho-
mologs are true positives (TP) and non-Homologs are false
positives (FP; Fig. 1A), (2) Homologs (TP), non-Topologs
(FP; Fig. 1B), (3) Topologs (TP), non-Topologs (FP; Fig.
1C), and (4) Topologs that are non-Homologs (TP), non-
Topologs (FP; Fig. 1D). Using non-Topologs as false posi-
tives is more conservative, because it is unlikely that non-
Topologs are homologous. With some exceptions, the rela-
tive performance of the methods tested was the same
regardless of the error model, and we conclude that these
results accurately reflect the general characteristics of the
methods.

Evaluation of sequence and structural comparison meth-
ods addresses a fundamental biological question: “How can
we reliably distinguish homology (divergence from a com-
mon ancestor) from analogy (convergence)?” This question
differs from the more common focus on search coverage—
identifying the largest number of homologs—as well as
from the common goal of detecting structural similarity for
the purpose of studying the protein folding problem (in
which case one is less concerned about common ancestry).
It is well recognized that sequences that share significant
structural similarity—and are thus inferred to be homolo-
gous—may not share significant sequence similarity; ho-
mologous proteins often lack significant sequence similar-
ity. Fortunately, however, there are no examples of proteins
that share statistically significant sequence similarity and

fold into different structures (a report by Sternberg and Is-
lam [1990], to the contrary, uses an inaccurate measure of
statistical significance; none of the examples in that paper
share statistically significant sequence similarity). Hence
sequence comparison is not concerned with analogy; non-
homologous sequences have E()-values less than 10−2 about
1 time in 100 (Fig. 5A; Pearson 1998).

Structures may also diverge such that they do not share
significant similarity, but, unlike sequences, it is presumed
that they can attain similar structures via convergent evo-
lution. The question is, how similar? Can we determine a
baseline of statistical significance above which we do not
expect to find any nonhomologous domains? The results
presented here suggest that we can, but with lower sensi-
tivity than is generally acknowledged.

Previous studies (Russell et al. 1997; Matsuo and Bryant
1999) have shown that it is difficult to distinguish between
homologous and analogous protein structures using auto-
matic pairwise structure comparison, and our present results
bear this out. The best-performing structural alignment pro-
gram, Dali, can detect ∼ 75% (840 out of 1120) of the Ho-
molog pairs, but requires 860 errors, or 10 errors per query,
to do so. However, 84% of those 860 errors are hits to
domains with the same Topology as the query, with 65% of
those domains being classified as TIM barrels or Rossmann
folds. (Similar numbers obtain for Structal and VAST, but CE
and Matras have much lower numbers of errors to Topologs).

Figure 5. The expected Poisson probability of seeing the reported E()-value vs. the observed probability when searching for (A) CATH
Homologs and (B) CATH Topologs for LSQMAN/Structal, Dali, CE, VAST, Matras, SSEARCH, and PSI-BLAST. The E()-values for
the highest-scoring false positive for each query are shown. Lines and symbols are as in Fig. 1, except that the Z-scores for Dali, CE,
and Matras (open symbols) were converted into E()-values (see text for details). The numbers in parentheses refer to the number of
data points that have y-values less than 0.001.
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A more accurate estimate of the true number of non-
homologs found at 75% coverage can be inferred from Fig-
ures 1 and 5. Figure 5B indicates that Dali generally does
not give statistically significant (i.e., e()-value <0.1) scores
to domains that are non-Topologs, and Figure 1D shows that
non-Homologous Topologs are generally not detected by
Dali with statistical significance: The coverage is only ∼ 3%
at 0.1 EPQ and ∼ 15% at 1 EPQ. Thus ∼ 85% of non-Ho-
mologous Topolog pairs (probable analogs) are as different
as non-Topolog pairs (clear analogs). This implies that
about 15% of the non-Homologous Topologs might be mis-
classified; these are responsible for the differences between
Figures 1A and 1B. Likewise, 165 of the 860 errors have
Dali expectations <0.1, and 395 have expectations <1.0,
suggesting that to identify 75% of homologs, 500 to 700
non-homologs will also be found.

Thus, to identify 75% of the homologs, Dali must accept
two false positive errors for every three true positive Ho-
mologs. In contrast, the best sequence comparison method,
PSI-BLAST, can only identify about half as many ho-
mologs, but achieves this sensitivity with only 10 false posi-
tives; PSI-BLAST is almost 30 times more selective. In-
deed, at 0.1 EPQ, PSI-BLAST finds two-thirds of the Ho-
mologs found by Dali, the best-performing structure
comparison method.

These conclusions must be qualified by considering Fig-
ure 2A, which shows the performance of each family inde-
pendently. With Dali, half of the queries achieve greater
than 80% coverage before hitting the first false positive,
Structal and Matras achieve greater than 70%, and CE and
VAST greater than 50%. Hence, the performance in Figure
1 is dominated by the worst-performing families. Nonethe-
less, at low error rates (EPQ <0.1), sequence comparison
still performs as well as structure comparison. Thus, con-
clusions based on the data in Figure 1 (and other EPQ
versus Coverage results) are conservative; homologs from
the “average” protein family are more easily identified. Un-
fortunately, there is no simple way to predict in advance
which families will perform poorly; family performance
varies with different comparison methods, and does not de-
pend upon simple criteria such as domain length or family
size.

The difficulty in distinguishing homologs from analogs is
reflected in the generally poor estimates of statistical sig-
nificance available for structure comparison. Structural
alignment programs often give statistical estimates that
overestimate the significance of a hit, at least when search-
ing CATH for Homologs, by several orders of magnitude.
When searching for Topologs, converting Dali Z-scores to
probabilities (equations 1 and 2) gives estimates that are
reasonably close to the observed distribution of errors, but
the other methods still dramatically overestimate the sig-
nificance of structural similarities. (This remains true when
counting errors only when the two domains are not in the

same CATH Architecture; data not shown.) Although mis-
classification of Homologs by CATH may account for some
of the poor statistical accuracy in Figure 5A, the poor per-
formance on Topologs (Fig. 5B) probably reflects genuine
error.

An expectation value estimates the probability of seeing
a given level of structural similarity by chance, but it is
unclear how to theoretically estimate the distribution of
scores one expects to see by chance. Practically, however,
one can establish some general upper and lower bounds. A
common model for the baseline level of structural similarity
seems to be that seen between domains in different classes
(Levitt and Gerstein 1998). This is perhaps reasonable if one
is interested in looking at structural similarity from a protein
folding perspective, but we would argue that this baseline
level is too low if one is interested in detecting homology.
Given the physical constraints on protein folding, one
would expect a certain level of structural similarity between
two unrelated domains in the same class, and thus the dis-
tribution of scores between unrelated domains should in-
clude scores between domains in the same class, and pos-
sibly with the same architecture. Figure 5B suggests that,
for Dali at least, more structural similarity than is seen for
non-Topologs would reliably indicate homology, rather
than analogy.

Thus, although structures diverge more slowly than se-
quences, making sequence comparison less sensitive than
structure comparison, one must take care to account for
structural analogy. At conservative statistical significance
thresholds (E() <0.01), PSI-BLAST finds 32.0% of CATH
Homologs and Dali detects 43.6%, an improvement of
about 33%. At much higher false-positive rates, structure
alignment can “identify” many more homologs; at E() <1.0,
DALI finds 65.3% of CATH Homologs, whereas PSI-
BLAST finds 36.3%, but the similar structures may include
many convergent analogs. If statistically accurate signifi-
cance is consistently required when inferring homology, the
number of independent ancient homologs will be substan-
tially larger than when homologs and analogs are grouped
together.

Materials and methods

Selection of queries/library

A nonredundant subset of the CATH 2.3 (available at http://
www.biochem.ucl.ac.uk/bsm/cath_new/index.html) protein do-
main database was created using the CD-HI program (Li et al.
2001), such that none of the domains had more than 40% sequence
identity with one another. First, all NMR structures, theoretical
models, and X-ray structures with a resolution poorer than 3.0 Å
were removed, as well as domains shorter than 20 residues, leaving
a total of 25,506 of 27,396 domains. This list of sequences was
then made nonredundant at 40% sequence identity by the CD-HI
program, leaving 2870 domains. Domains not in classes 1–4 (all-�,
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all-�, mixed �/�, and few secondary structures, respectively) were
removed, leaving 2771 domains. These 2771 domains represent
1099 Homologous superfamilies and 623 Topologies. We then
selected the longest domain from each of 86 CATH Homology
families that had more than five members in their respective
CATH Sequence family (35% sequence identity) as a query. (The
queries were left in the target library.) These 86 queries repre-
sented 57 different CATH Topologies. Pairwise comparisons were
carried out, with each query being compared to each member of
the library. We refer to the 86 queries as our query set, to the 2771
library domains as our target library, and to pairwise comparisons
as alignments.

Programs used

There are numerous programs available for comparing two protein
structures. Time and space considerations limited our analysis to a
subset of these. We evaluated programs that (1) are widely used,
(2) report statistical scores, and (3) provided a variety of algo-
rithms and scoring schemes. We used the standalone version of the
Dali program (Holm and Sander 1996) called DaliLite (Holm and
Park 2000), obtained from the Web site ftp://ftp.ebi.ac.uk/pub/
contrib/holm/dl/, with default parameters. We used the Linux ver-
sion of the Combinatorial Extension (CE) program (Shindyalov
and Bourne 1998), obtainable at http://cl.sdsc.edu/ce.html, also
with default parameters. We used the Structal method as imple-
mented in the LSQMAN program (Kleywegt 1996) from the
Uppsala Software Factory: http://xray.bmc.uu.se/usf/. Specifically,
we used the Fast Force and Improve commands to get an initial
alignment, then the DP command to implement the dynamic-pro-
gramming method of Levitt and Gerstein (1998). We then used the
Global command to calculate the statistics based on the Gerstein
and Levitt structural similarity score (Levitt and Gerstein 1998).
For VAST (Gibrat et al. 1996), we set up a local version of the
program (available at ftp://ftp.ncbi.nih.gov/pub/pkb/). After print-
ing out the text files in Splus that list the domains and secondary
structure elements (SSEs) as calculated by the PKB system, we
modified the domain definitions to fit the CATH domains. The
statistics reported by VAST depend upon a specific definition of
SSEs and their frequency in the database (T. Madej, pers. comm.),
so in some cases the CATH segment or domain boundaries had to
be trimmed or lengthened slightly so that they would not interrupt
a VAST SSE definition. Also, for 67 of the domains in the library,
VAST was unable to assign SSEs, meaning that the library for
VAST consisted of 2704 domains. However, only one of the omit-
ted domains is a true positive for any of the queries, and none of
them appear in the first 100 errors of any of the other methods.
Thus these omissions do not affect the results reported here. For
Matras, we used the Linux version of the program provided by the
authors (Kawabata and Nishikawa 2000) with default parameters.
For SGM (Rogen and Fain 2003), we used an executable provided
by the authors that calculates the Gauss integrals of input domains,
then calculated the Euclidean distance between each of the query
and target domains to derive the SGM, as described in (Rogen and
Fain 2003). We also evaluated the PRIDE method (Carugo and
Pongor 2002), which calculates a structural distance between pro-
teins that is based upon internal contacts. This method did not
perform as well as the SGM method, so we do not show the data
from PRIDE.

For the sequence alignment programs, we used locally installed
versions of the SSEARCH program (Smith and Waterman 1981;
Pearson 1991; part of the FASTA package, available at ftp://
ftp.virginia.edu/pub/fasta) and the PSI-BLAST program (Altschul
et al. 1997; available at http://www.ncbi.nlm.nih.gov/blast/).

SSEARCH was run using the BLOSUM50 matrix with gap open
and extension penalties of −10 and −2, respectively. PSI-BLAST
was run for a maximum of five cycles against an 95% identity
nonredundant version of the BLAST nonredundant (nr) database,
with a cutoff expectation value of 10−3 for inclusion in the next
round of searching, to derive a position-specific scoring matrix
(pssm) for each query. The BLOSUM62 scoring matrix was used
with gap open/extension penalties of −11/−1. The query was then
run once with the same scoring matrix and gap penalties against
the target CATH library using the previously defined pssm.

Errors per Query versus Coverage plots

To create an Errors per Query (EPQ) versus Coverage plot, the list
of pairwise comparisons is sorted on the score of interest (e.g., the
Dali Z-score). Then the list is examined, from best score to worst.
The coverage is increased if the two members of the pair are
homologs, and the error is increased if they are not. The ideal
curve would go from zero to 100% coverage before finding any
errors. EPQ is the total number of errors at a given point, divided
by the number of queries. Coverage is the total number of hits at
a given point, divided by the total number of possible homolog
pairs (Brenner et al. 1998).

For the individual query Errors versus Coverage plots (Fig. 2),
the coverage for each query was recorded at the 1st, 3rd, 10th,
30th, and 100th false positive, and either the median of the cov-
erage values or the coverage at the 25th percentile was plotted for
each method. For the lower portion of the plots, the queries were
sorted according to length and binned into groups of 10 (the group
with the longest lengths had only six members). For each group-
ing, the coverage was recorded at the 1st, 3rd, and 10th false
positive, with either the median or second worst coverage plotted.
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