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ABSTRACT

Protein sequence similarity searching programs like BLASTP, SSEARCH, and FASTA use scor-
ing matrices that are designed to identify distant evolutionary relationships (BLOSUM62 for
BLAST, BLOSUM50 for SSEARCH and FASTA). Different similarity scoring matrices are
most effective at different evolutionary distances. “Deep” scoring matrices like BLOSUM62 and
BLOSUM50 target alignments with 20% to 30% identity, while “shallow” scoring matrices (e.g.,
VTML10 to VTML80) target alignments that share 90% to 50% identity, reflecting much less
evolutionary change. While “deep” matrices provide very sensitive similarity searches, they also
require longer sequence alignments and can sometimes produce alignment overextension into
nonhomologous regions. Shallower scoring matrices are more effective when searching for short
protein domains, or when the goal is to limit the scope of the search to sequences that are likely
to be orthologous between recently diverged organisms. Likewise, in DNA searches, the match
and mismatch parameters set evolutionary look-back times and domain boundaries. In this unit,
we will discuss the theoretical foundations that drive practical choices of protein and DNA simi-
larity scoring matrices and gap penalties. Deep scoring matrices (BLOSUM62 and BLOSUM50)
should be used for sensitive searches with full-length protein sequences, but short domains or
restricted evolutionary look-back require shallower scoring matrices. Curr. Protoc. Bioinform.
43:3.5.1-3.5.9. C© 2013 by John Wiley & Sons, Inc.
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SIMILARITY SEARCHING,
HOMOLOGY, AND STATISTICAL
SIGNIFICANCE

Protein similarity scoring matrices dramat-
ically improve evolutionary look-back time
because they capture amino acid substitution
preferences that have emerged over evolution-
ary time. Amino acid changes can range from
biochemically conservative, e.g., leucine to va-
line or arginine to lysine, to dramatically dif-
ferent, e.g., tryptophan to glycine. Amino acid
scoring matrices capture this evolutionary in-
formation; conservative changes receive pos-
itive scores, while nonconservative changes
will receive the largest negative scores.
As a result, statistical expectation values
(E() values) based on amino-acid similarity
scores are far more sensitive than percent iden-
tity for finding homologs (UNIT 3.1).

In this unit, we provide a brief overview
of the history of scoring matrices, the alge-
bra used to calculate scoring matrices, and
the important concepts of matrix information

content and matrix target evolutionary dis-
tance. Because finding distantly related pro-
tein sequences is more challenging than find-
ing closely related sequences, the BLOSUM62
matrix used by the BLAST programs and
the BLOSUM50 matrix used by the FASTA
programs are designed to identify distant
homologs using long (typically full-length)
sequences. Understanding the explicit or im-
plicit evolutionary models used in similar-
ity scoring matrices makes it much easier to
choose the right scoring matrix. Generally,
searches for short domains (or with shorter
query sequences) require shallower scoring
matrices. Likewise, shallow scoring matrices
can be more effective at highlighting com-
mon orthologs when comparing proteins that
have diverged in the past 100 to 500 mil-
lion years. While deep scoring matrices are
more effective in identifying distant relation-
ships, deep scoring matrices can also con-
tribute to homologous overextension when
two closely related domains are embedded in
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nonhomologous protein contexts. Using the
appropriate scoring matrix can improve both
search sensitivity and alignment accuracy.

AMINO ACID SUBSTITUTION
MATRICES: HISTORY AND
CLASSIFICATION

The earliest amino acid scoring matrices
were based on amino acid properties or ge-
netic code differences, but modern amino acid
scoring matrices are based on empirical mea-
surements of amino acid replacement frequen-
cies from large sets of homologous sequences
(Schwartz and Dayhoff, 1978). Empirical re-
placement frequency scoring matrices can be
divided into two types: those with an explicit
evolutionary model and the BLOSUM scoring
matrices. Model-based scoring matrices in-
clude Dayhoff’s original PAM series of matri-
ces (Schwartz and Dayhoff, 1978), which were
updated by Jones, Taylor, and Thornton (Jones
et al., 1992). More recently, Gonnet (Gonnet
et al., 1992) and Vingron and Mueller (VT
and VTML; Mueller et al., 2002) developed

model-based parameters using alignments be-
tween more distantly related proteins.

Model-based scoring matrices are appeal-
ing because they can be calculated for align-
ments at any evolutionary distance. Dayhoff’s
original PAM250 matrix was calculated based
on 1572 observed mutations in 71 families
of proteins with alignments that were more
than 85% identical. The frequency of muta-
tions was normalized for 1% change (99%
identity), or PAM1, and then extrapolated to
much longer evolutionary distances simply by
multiplying the replacement frequency matrix.
Thus, PAM10 corresponds to ∼90% identity,
PAM30, ∼75% identity, PAM70, ∼55% iden-
tity, PAM120, ∼37% identity, and PAM250,
∼20% identity. Table 3.5.1 presents a more
comprehensive set of scoring matrices and
target percent identities. More recently, Vin-
gron and Mueller described strategies for
estimating replacement frequencies that use
measurements from a broader range of evolu-
tionary distances. However, evolutionary mod-
els assume that the model accurately describes

Table 3.5.1 Scoring Matrix Target Identity, Information Content, and Alignment Lengtha

Matrix Gap penaltyb % Identity
Bits/
position

Random
alignment length

50-bit
length

SSEARCH version 36.3.6

BLOSUM50c 10/2 25.3 0.21 160 238

BLOSUM62 11/1 28.9 0.40 86 125

VTML 160c,d 12/2 23.9 0.25 139 200

VTML 140 10/1 28.4 0.44 82 114

VTML 120 11/1 32.1 0.54 62 93

VTML 80 10/1 40.5 0.74 47 68

VTML 40 13/1 64.7 1.92 18 26

VTML 20 15/2 86.1 3.30 11 15

VTML 10 16/2 90.9 3.87 9 13

BLAST version 2.2.27+
BLOSUM50c 13/2 29.4 0.39 85 128

BLOSUM62 11/1 29.6 0.41 82 122

BLOSUM80 10/1 32.0 0.48 69 104

PAM70 10/1 33.9 0.58 56 86

PAM30 9/1 45.9 0.90 34 56
aMedian percent identity, bits per aligned position, alignment length, and alignment length required for a 50-bit score
based on searches of 140 random sequences against 240,000 real protein sequences using the specified scoring matrix
and gap penalties.
bGap open/extend penalty, where the total penalty is open + r × extend, where r is the number of residues in the gap.
Thus, a 10/2 penalty produces a penalty of 12 for a one residue gap, 14 for two residues, etc.
cScaled in 1/3-bit units; all other matrices are scaled in 1/2-bit units.
dAs calculated according to Mueller et al. (2002).
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replacement frequencies over long evolution-
ary times (Mueller et al., 2002).

In 1992, Steve and Jorja Henikoff de-
scribed a direct approach to counting replace-
ment frequencies at long evolutionary dis-
tances (Henikoff and Henikoff, 1992). The
BLOSUM scoring matrices avoided the prob-
lem of extrapolating from PAM1 replace-
ment frequencies by counting replacement fre-
quencies directly with the BLOSUM series
of matrices. Rather than relying on align-
ments of relatively closely related proteins,
they identified conserved BLOCKS, or un-
gapped patches of conserved sequences, in
sets of proteins that were potentially very dis-
tantly related. They then counted the amino
acid replacements within these blocks, us-
ing a percent identity threshold to exclude
closely and more moderately related se-
quences. In their description of the BLO-
SUM matrices, they showed that BLOSUM62
performed much more effectively than ei-
ther the PAM120 (BLOSUM62 equivalent in-
formation content) or the PAM250 matrix
(BLOSUM45 equivalent) for identifying dis-
tant homologs. BLOSUM62 was then incor-
porated as the default for the BLASTP (UNIT

3.4) program, while FASTA (UNIT 3.9) and
SSEARCH (UNIT 3.10) switched to the BLO-
SUM50 matrix, which is more sensitive than
BLOSUM62, but requires longer alignments.

THE ALGEBRA OF SIMILARITY
SCORING (LOG-ODDS) MATRICES

Scoring Matrices as Odds Ratios
Similarity scoring matrices for local se-

quence alignments, which are rigorously cal-
culated by the Smith-Waterman algorithm
(Smith and Waterman, 1981) and heuristi-
cally calculated by BLASTP (Altschul et al.,
1990; Altschul et al., 1997) or FASTA (Pear-
son and Lipman, 1988), require scoring ma-
trices that produce negative values on average
between random sequences. If the average or
expected matrix score is positive, the align-
ment will extend to the ends of the sequences,
and be global, rather than local. Dayhoff’s ini-
tial PAM matrices were calculated as log-odds
ratios, the logarithm of the ratio of the align-
ment frequency observed after a given evo-
lutionary distance divided by the alignment
frequency expected by chance:

log frequency in homologs
frequency by chance

⎛

⎝
⎜

⎞

⎠
⎟

The Henikoffs used the same odds-ratio al-
gebra when developing the BLOSUM matri-
ces, but calculated their transition frequencies
by counting the number of weighted changes
in different blocks.

In 1991, Altschul published a seminal paper
(Altschul, 1991) that showed that any scor-
ing matrix appropriate for local alignments
(one with a negative expected score) could be
treated as a “log-odds” matrix of the form: λsi,j

= log(qij/pipj), where sij is the score given to
the i,j alignment, qij is the replacement fre-
quency for amino acid i to j, and the pipj term
gives the expected frequency of two amino
acids aligning by chance. The λ term is used
to scale the matrix so that individual scores
can be accurately represented with integers.
Widely used scoring matrix values typically
range from −10 to +20, reflecting λ scale fac-
tors of ln(2)/2—half-bit units used by BLO-
SUM62 and PAM120—or ln(2)/3—third-bit
units used by BLOSUM50 and PAM250. For
example, the BLOSUM62 score for aligning
aspartic acid (“D”) with itself is +6, and BLO-
SUM62 is scaled in 1/2-bit units, so a D:D
alignment in related proteins is 6 = 2.0 ×
log2(qD,D/pDpD) or 23 = 8 times more likely
to occur because of homology than by chance.
Likewise, the BLOSUM62 matrix assigns a
D:L alignment a score of −4, which means
that it is 22 = 4 times more likely to occur by
chance than in the homologous blocks aligned
for BLOSUM62.

This ratio of homologous replacement fre-
quency to chance alignment frequency ex-
plains why modern scoring matrices can give
very different scores to identical residues. In
the denominator, amino acids are not uni-
formly abundant (common amino acids like
L, A, S, and G are found more than four times
more frequently than rare amino acids like W,
C, H, and M; see APPENDIX 1A for a table of
the 1-letter amino acid codes), so common
amino acids often have lower identity scores
than rare ones. Likewise, amino acids are not
uniformly mutable—A, S, and T change fre-
quently over evolutionary time, while W and C
change rarely. Thus, the highest identity score
in the BLOSUM62 matrix (Fig. 3.5.1) is 11,
corresponding to a W:W alignment, while A,
I, L, S, and V get identity alignment scores of
4. Differences in identity scores, together with
positive scores for nonidentity alignments be-
tween conserved amino acids, explain why se-
quence similarity scores are dramatically more
sensitive than percent identity for inferring
homology (see UNIT 3.1).
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   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  X
A  4
R -1  5
N -2  0  6
D -2 -2  1  6
C  0 -3 -3 -3  9
Q -1  1  0  0 -3  5
E -1  0  0  2 -4  2  5
G  0 -2  0 -1 -3 -2 -2  6
H -2  0  1 -1 -3  0  0 -2  8
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7
S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7
V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4
X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 3.5.1 The BLOSUM62 matrix. The BLOSUM62 matrix used by BLASTP, BLASTX, and
TBLASTN is actually 23 × 23: 20 amino acids plus X (any amino acid), B (D or E), and Z (N or
Q). Only the lower half of the symmetric matrix is shown to highlight the identity scores on the
diagonal. The most positive value is 11 (W:W alignment); the most negative is −4 (found for many
hydrophobic/hydrophilic and small/large replacements). The BLOSUM62 matrix is scaled in 1/2-bit
units, so the W:W alignment of 11 is 25.5 = 45 times more common in homologous proteins than
by chance. Weighted by amino acid abundance, the average similarity score is about −1 half-bits.

Matrix Information Content, Target
Identity, and Alignment Length

In addition to generalizing scoring ma-
trices as log-odds matrices, Altschul (1991)
also showed that log-odds scoring matrices
have an associated information content (rel-
ative entropy) or score per aligned position
(“bits-per-position”). “Bits-per-position” can
be used to estimate the number of aligned
residues required to produce a statistically
significant score. Shallow scoring matrices
(e.g., PAM/VTML 10, PAM/VTML 20, or
PAM/VTML 40) have higher information
content than deep matrices (BLOSUM62,
PAM250), which means that a shorter align-
ment (10 to 50 residues) can produce a more
statistically significant score. At the same time,
shallower matrices tend to produce higher
identity alignments, because they give higher
positive scores to identities and more nega-
tive scores to replacements (Table 3.5.1 and
Fig. 3.5.2). For example, if an alignment needs
a 50-bit score to be significant in a database
search (UNIT 3.1), and the average bit score
for BLOSUM62 is about 0.4 bits per aligned
position (Table 3.5.1), then about 50/0.4 =
125 residues must be included in the align-
ment. In contrast, the VT20 matrix provides
about 3.3 bits per aligned position, so even a

15-residue alignment can be significant. Thus,
in a large-scale similarity search that needs
a 50-bit score for statistical significance, do-
mains shorter than 125 amino acids, or DNA
exons shorter than 375 residues, often would
not produce statistically significant scores
with BLOSUM62, the default matrix used by
BLAST, while exons shorter than 50 residues
can easily be detected with VT20.

“Shallow” scoring matrices have more in-
formation content because they give more pos-
itive scores to identities and more negative
scores to nonidentical replacements by vary-
ing the qij term in the log-odds matrices (the
pipj values do not depend on evolutionary dis-
tance). From the evolutionary perspective, se-
quences that have diverged for less time, e.g.,
10% to 20% change, will have more identi-
cal residues and fewer replacements simply
because there has been less time for the se-
quences to change. Alternatively, sequences
that have less than 25% identity because of
a large amount of change will have many
fewer identities and many more conservative
replacements (PAM200 sequences will be less
than 25% identical, on average). The numer-
ical basis for this difference can be seen in
Fig. 3.5.2, which compares parts of a “shal-
low” (VTML 20) and “deep” (BLOSUM62)
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VTML 20                          BLOSUM62
    A   R   N   D   C   Q   E        A   R   N   D   C   Q   E
A   7                            A   4                  
R  -7   8                        R  -1   5      
N  -6  -5   8                    N  -2   0   6            
D  -6 -12  -1   8                D  -2  -2   1   6         
C  -3  -7  -8 -14  12            C   0  -3  -3  -3   9      
Q  -5  -2  -4  -4 -13   9        Q  -1   1   0   0  -3   5   
E  -5 -10  -5  -1 -14  -1   7    E  -1   0   0   2  -4   2   5

Figure 3.5.2 Comparison of a “shallow” (VTML 20) and “deep” (BLOSUM62) scoring matrix.
Both matrices are scaled in 1/2-bits. For the small part of the matrices shown here, the VTML20
matrix produces an average 2.80 half-bit identity score, and an average −0.59 nonidentical score
(weighted by amino-acid abundance). In contrast, BLOSUM62 produces 1.86 for identities but
only −0.06 for nonidentities. Thus, VTML20 targets shorter, higher-identity alignments, because
it penalizes nonidentities much more strongly.

matrix. Thus, in addition to differing in infor-
mation content, scoring matrices have range of
target percent identities and alignment lengths
(Table 3.5.1). Shallower scoring matrices
produce shorter, more identical alignments,
because they give more negative scores to
nonidentical aligned residues. “Deeper” scor-
ing matrices produce longer alignments with
lower percent identities because the penalty
for a mismatch is much lower and more con-
servative nonidentities get positive scores.

In practice, the relationship between scor-
ing matrix evolutionary distance, information
content, percent identity, and alignment length
suggests two reasons for changing from the
BLOSUM62 and BLOSUM50 matrices used
by BLASTP and SSEARCH/FASTA. First,
one should change to a shallower matrix when
looking for short alignments. We need a shal-
lower scoring matrix for short domains, short
exons, or short DNA reads because deep scor-
ing matrices like BLOSUM62 do not have
enough information content to produce signif-
icant scores. Short alignments require shallow
scoring matrices.

One should also use a shallower scor-
ing matrix when looking for orthologs—
sequences that differ because of specia-
tion events and are likely to share similar
functions—between “relatively” closely re-
lated organisms (100 to 500 My). Protein se-
quence comparison algorithms are very sensi-
tive; BLASTP and SSEARCH routinely find
significant alignments between human and
yeast (1.2 billion year divergence) and human
and E. coli (>2.4 billion years). Because of this
sensitivity, a mouse-human comparison often
reports not only the orthologs (sequences that
diverged at the primate/rodent split 80 million
years ago), but also dozens of more distantly
related paralogs that may have diverged 200

to 2000 million years ago. Mouse and human
orthologs share about 83% amino acid iden-
tity; thus, for mammals, the VTML 20 matrix
is expected to find all orthologs and paralogs
that have diverged over the past 200 million
years, but the matrix is much less likely to
identify paralogs that share less than 40% se-
quence identity (divergence time > 1000 mil-
lion years).

SCORING MATRICES AND GAP
PENALTIES

While there is an intuitive mathematical ex-
planation for pairwise similarity scores from
the log-odds perspective, sensitive sequence
alignments require both aligned residues and
insertion or deletion gaps. Unfortunately, we
do not have an analytical model for gap
penalties and evolutionary distances. The de-
fault gap-penalties provided for BLASTP,
SSEARCH, and FASTA were determined em-
pirically (e.g., Pearson, 1991) with a fo-
cus on identifying distant homologs. In gen-
eral, default gap penalties for BLASTP and
SSEARCH/FASTA are set as low as possible;
lower gap penalties would convert alignments
from local to global, which would invalidate
the statistical estimates. Thus, when consider-
ing whether to change gap penalties to improve
search selectivity for a particular protein fam-
ily, gap penalties should be increased (made
more stringent), not decreased. Just as “shal-
lower” scoring matrices target less divergence
by giving higher scores to identities and more
negative scores to nonidentities, gap penalties
should increase with shallower scoring matri-
ces (Reese and Pearson, 2002). Simulations
to maximize the significance of short align-
ments suggest that for 1/2-bit scoring matrices,
gap open penalties of 16.7−(0.067 × pam-
distance), e.g., 16.7−(0.067 × 20) = 15 for
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VTML 20, and gap extend penalties of 2, are
most effective (Reese and Pearson, 2002).

Low gap penalties can dramatically re-
duce the information content and average per-
cent identity associated with a scoring matrix,
and can dramatically increase the lengths of
alignments produced by the matrix. The tar-
get percent identity, information content, and
alignment lengths presented in Table 3.5.1
reflect the observed median values of the
highest-scoring alignment produced by ran-
dom queries against real protein sequences
with the specified matrix and gap penalties.
If gaps are not allowed, the average percent
identity and information content increase and
alignment length gets shorter. For example, if
gaps are not allowed with BLOSUM62, the
median percent identity increases from 28.9
(Table 3.5.1) to 33, information content almost
doubles from 0.40 to 0.74, and median random
alignment length drops from 86 to 45 residues.
A similar effect is seen with VTML 80, where
information content increases and alignment
lengths decrease almost 2-fold when gaps are
not allowed. Gap effects are less dramatic with
shallower matrices like VTML 20—from 86%
to 89% identity, from 3.3 to 3.5 bits per posi-
tion, and from 11 to 10 residue median align-
ment lengths—because short evolutionary dis-
tances should allow many fewer insertions and
deletions.

BLASTP Gap Penalties with Shallow
Scoring Matrices

While the BLAST programs offer a set
of scoring matrices with different evolution-
ary horizons (BLOSUM50 and BLOSUM62
are “deep”; PAM30 is relatively “shallow”),
the modest gap penalties provided with their
shallow matrices dramatically modify their
effective evolutionary distance (Table 3.5.1).
The “shallowest” combination of scoring ma-
trix (PAM30) and gap penalties (9/1) requires
an average of 56 aligned amino acids, or
more than 160 nucleotides, to produce a 50-
bit alignment score. Because these gap penal-
ties are too low (Reese and Pearson, 2002),
the BLAST protein matrices are less effec-
tive for short alignments or short evolution-
ary distances than they would be with higher
penalties.

LONG ALIGNMENTS AND
OVEREXTENSION

In addition to differing in information
content (score or “bits” per aligned posi-
tion) and optimal evolutionary distances (per-

cent identity), different scoring matrices have
different preferred alignment lengths (Ta-
ble 3.5.1). Shallow scoring matrices have
large negative values for amino acid replace-
ments (Fig. 3.5.2), so alignments to nonho-
mologous (random) sequences will be short.
Deep scoring matrices have less negative av-
erage replacement scores (VTML20’s aver-
age nonidentity score is −5.8 half-bits, while
BLOSUM62’s is −1.2 half-bits), so their
alignments tend to be longer. Table 3.5.1 (ran-
dom alignment length column) summarizes
the median alignment length between random
queries and real protein sequences. BLAST
and SSEARCH/FASTA statistics are very ac-
curate (UNIT 3.1), so sequences that share sta-
tistically significant scores will always share
a homologous domain. However, BLAST and
SSEARCH/FASTA calculate local sequence
alignments—the alignments begin and end at a
position that maximizes the alignment score—
so the boundaries of the alignment depend on
both the location of the homologous domain
and the scoring matrix used to produce the
alignment. When a deep scoring matrix like
BLOSUM62 is used to align more closely
related sequences, the alignment can extend
(overextend) into nonhomologous neighbor-
ing sequence. Gonzalez and Pearson (2010)
termed this artifact “homologous overexten-
sion,” and showed that it is a major source of
errors in PSI-BLAST searches.

Homologous overextension often occurs
from short repeated domains. For ex-
ample, Figure 3.5.3A shows a BLASTP
alignment of VAV HUMAN (P15498) with
SKAP2 XENTR (Q5FVW6), a protein that
contains an SH3 domain that is homologous
over 58 amino acids. However, the align-
ment is 198 residues long; the additional 140
residues in the alignment include a 100-residue
Pleckstrin domain in SKAP2 XENTR that
is not homologous (VAV HUMAN contains
an SH3 domain in the region that aligns to
the Pleckstrin domain in SKAP2 XENTR).
The 58-residue homologous SH3 domain con-
tributes 85% of the bit score, with the addi-
tional 140 residues contributing less than 15%
of the score. Using the slightly more strin-
gent (shallower) BLOSUM80 matrix does not
change the alignment overextension.

The FASTA programs offer a new option
for identifying homologous overextension—
subdomain scoring (Fig. 3.5.3B). By using
the domain annotations available for one of
the sequences to subdivide the alignment, it
becomes apparent that the 58-residue SH3
domain is responsible for almost all of the
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sp|P15498.4|VAV_HUMAN Proto-oncogene vav:                        Length: 845
sp|Q5FVW6.2|SKAP2_XENTR  Src kinase-associated phosphoprotein 2  Length: 328

Range 1: 128 to 326 
Score             Expect M             Identities Positives   Gaps
45.8 bits(107) 1e-05  Comp. matrix adjust. 49/202(24%) 78/202(38%) 12/202(5%)

[ SH3
Query  649  WFPCNRVKPYVHGPPQDLSVHLWYAGPMERAGAESILAN--RSDGTFLVRQRVKDAAEFA  706
            W  C     Y +G  +D      ++    RA     L    + D  F +    K   +FA
Sbjct  128  WCVCTNSMFYYYGSDKDKQQKGAFSLDGYRAKMNDTLRKDAKKDCCFEIFAPDKRVYQFA   187

]
Query  707  ISIKYNVEVKHIKIMTAEGLYRITEKKAFRGLTELVEFYQQNSLKDCFKSLDTTLQFPF K  766
             S     E     IM + G     +++ +  + + V+   +   +D ++ L    + P  
Sbjct  188  ASSPKEAEEWVNIIMNSRGNIPTEDEELYDDVNQEVDASHE---EDIYEELPEESEKPVT  244

Pleckstrin ]
[      SH2

Query  767  EPEKRTISRPAVGSTK------YFGTAKARYDFCARDRSELSLKEGDIIKILNKK-GQQG  819
            E E    +   V +T       Y    +  +D       ELS K GD I IL+K+    G
Sbjct  245  EIETPKATPVPVNNTSGKENTDYANFYRGLWDCTGDHPDELSFKHGDTIYILSKEYNTYG  304

[
]

Query  820  WWRGEIYGRVGWFPANYVEEDY 841
WW GE+ G +G  P  Y+ E Y

Sbjct  305  WWVGEMKGTIGLVPKAYIMEMY 326
]

A

sp|P15498.4|VAV_HUMAN Proto-oncogene vav
sp|Q5FVW6.2|SKAP2_XENTR Src kinase-associated phosphoprotein          (328 aa)
sRegion: 626-725:103-206 : score=7;  bits=8.7;  Id=0.202; Q= 0.0 :  Pleckstrin
qRegion: 671-765:150-243 : score=7;  bits=8.7;  Id=0.175; Q= 0.0 :  SH2
qRegion: 782-841:260-326 : score=83; bits=35.8; Id=0.343; Q=53.4 :  SH3
sRegion: 783-841:266-326 : score=88; bits=37.6; Id=0.383; Q=58.7 :  SH3
 s-w opt: 116 bits: 47.6 E(454402): 0.0006

B

Figure 3.5.3 Overextension of an alignment of homologous SH2 domains. (A) BLASTP alignment of
VAV HUMAN with SKAP2 XENTR. The two proteins share a homologous SH2 domain (highlighted in red) over
about 58 amino acids that contributes more than 85% of the similarity score. The remaining 140 amino acid
alignment juxtaposes an SH3 domain from VAV HUMAN (brown) with a Pleckstrin domain from SKAP2 XENTR
(green). These two domains are not homologous; they are classified as having different folds in SCOP. (B)
Sub-alignment scores produced by the SSEARCH36 program using the same scoring matrix as BLASTP
(BLOSUM62, 11/1) for the VAV HUMAN / SKAP2 XENTR alignment. Boundaries for annotated domains in the
two proteins were taken from InterPro using the query VAV HUMAN (qRegion) or the subject SKAP2 XENTR
(sRegion). Thus, 103-206 for the Pleckstrin domain comes from InterPro annotations for SKAP2 XENTR, as
does 671-765 for SH3 domain in VAV HUMAN. The raw score, bit-score, and percent identity are shown for the
subregions. The Q-score is −10log(p-value) based on the bit score; thus Q = 30 corresponds to a probability
(uncorrected for database size) of 0.001.

significant similarity found. It is often very
difficult to judge the quality of a distant
alignment visually; subdomain scoring pro-
vides a quantitative strategy for identifying
overextension.

SCORING MATRICES FOR DNA
DNA scoring matrices, which are usually

implemented as match/mismatch scores, can
also be treated as log-odds matrices with target
evolutionary distances (States et al., 1991). For

example, the default match/mismatch penal-
ties used by BLASTN in its most sensitive
mode (-task blastn) uses a score of +2
for a match and −3 for a mismatch, which
targets sequences at PAM10, or 90% identity
(States et al. 1991). By default, searches on
the NCBI nucleotide BLAST Web site use
MEGABLAST (-task megablast), with
match/mismatch scores of +1/−3 that tar-
get sequences that are 99% identical. By de-
fault, the FASTA program uses +5/−4 (also
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available with BLASTN, -task blastn),
which corresponds approximately to PAM 40,
or 70% identity. Because DNA sequence com-
parison is much less sensitive than protein se-
quence comparison, it is very difficult to detect
statistically significant DNA:DNA sequence
similarity at distances greater than PAM 40
(PAM 40 is a short distance for protein com-
parisons).

In practice, the effective target identity
for heuristic methods like BLAT, BLASTN,
MEGABLAST, and other genome-alignment
programs that do use scoring matrices, may
be difficult to estimate from the reported
match/mismatch scores. Heuristic programs
typically use a hierarchy of filters to accel-
erate the similarity search, and each of those
filters will affect the percentage identity and
evolutionary distance of the alignments that
are displayed. As a result, it is possible that
the displayed alignments may have a lower
percent identity than other possible alignments
that were excluded during the early stages of
the filtering process.

Ideally, the match/mismatch penalties used
in genome alignment would match the evo-
lutionary distances of the sequences being
aligned; human DNA is expected to be more
than 99.9% identical to itself, but human-
mouse alignments in protein-coding regions
will be less than 80% identical (outside
of protein-coding regions, identity will typ-
ically be undetectable at <50%). Likewise,
match/mismatch parameters should reflect po-
tential alignment length; searches with short
sequences will need higher match/mismatch
ratios with higher information content (States
et al., 1991).

SUMMARY
The BLAST and FASTA/SSEARCH

protein-alignment programs use “deep” sim-
ilarity scoring matrices like BLOSUM62 or
BLOSUM50 to identify homologs that share
less than 25% sequence identity. Deep scor-
ing matrices require long sequence alignments
to achieve statistically significant similarity
scores and are more likely to extend align-
ments outside the homologous region. Shal-
lower scoring matrices are more effective
when searching for short homologous domains
or short (<150-nt) exons, or when search-
ing over shorter evolutionary distances. Scor-
ing matrices that are matched to the evolu-
tionary distance of the homologous sequences
are also less likely to produce homologous
overextension.

The match/mismatch ratios used in DNA
similarity searches also have target evolution-
ary distances. The stringent match/mismatch
ratios used by MEGABLAST are most ef-
fective at matching sequences that are essen-
tially 100% identical, e.g., mRNA sequences
to genomic exons. Deeper, more sensitive
DNA scoring parameters are more effective
for longer DNA evolutionary distances, e.g.,
mouse-human.

While scoring matrices and gap penal-
ties can dramatically affect search sensitiv-
ity and alignment regions, modern sequence-
comparison programs provide accurate simi-
larity statistics, so it is unlikely that the wrong
scoring matrix will produce a significant match
to a nonhomologous protein. However, the
wrong matrix can prevent short homologous
regions from being found, or allow an overex-
tension into a nonhomologous region from
a homologous domain. The rapidly increas-
ing volume of protein sequence means that
close homologs will often be available, and
shallower scoring matrices can produce more
reliable, functionally informative alignments
when closer homologs (>50% identical) are
found.
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