
UNIT 3.1An Introduction to Sequence Similarity
(“Homology”) Searching

William R. Pearson1

1University of Virginia School of Medicine, Charlottesville, Virginia

ABSTRACT

Sequence similarity searching, typically with BLAST, is the most widely used and most
reliable strategy for characterizing newly determined sequences. Sequence similarity
searches can identify “homologous” proteins or genes by detecting excess similarity—
statistically significant similarity that reflects common ancestry. This unit provides an
overview of the inference of homology from significant similarity, and introduces other
units in this chapter that provide more details on effective strategies for identifying
homologs. Curr. Protoc. Bioinform. 42:3.1.1-3.1.8. C© 2013 by John Wiley & Sons, Inc.
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AN INTRODUCTION TO IDENTIFYING HOMOLOGOUS SEQUENCES

Sequence similarity searching to identify homologous sequences is one of the first, and
most informative, steps in any analysis of newly determined sequences. Modern protein
sequence databases are very comprehensive, so that more than 80% of metagenomic se-
quence samples typically share significant similarity with proteins in sequence databases.
Widely used similarity searching programs, like BLAST (Altschul et al., 1997; UNIT 3.3 &

3.4), PSI-BLAST (Altschul et al., 1997), SSEARCH (Smith and Waterman, 1981; Pear-
son, 1991; UNIT 3.10), FASTA (Pearson and Lipman, 1988; UNIT 3.9), and the HMMER3
(Johnson et al., 2010) programs produce accurate statistical estimates, ensuring protein
sequences that share significant similarity also have similar structures. Similarity search-
ing is effective and reliable because sequences that share significant similarity can be
inferred to be homologous; they share a common ancestor.

The units in this chapter present practical strategies for identifying homologous sequences
in DNA and protein databases (UNITS 3.3, 3.4, 3.5, 3.9, 3.10); once homologs have been found,
more accurate alignments can be built from multiple sequence alignments (UNIT 3.7),
which can also form the basis for more sensitive searches, phenotype prediction, and
evolutionary analysis.

While similarity searching is an effective and reliable strategy for identifying homologs—
sequences that share a common evolutionary ancestor—most similarity searches seek to
answer a much more challenging question: “Is there a related sequence with a similar
function?” The inference of functional similarity from homology is more difficult, both
because functional similarity is more difficult to quantify and because the relationship
between homology (structure) and function is complex. This introduction first discusses
how homology is inferred from significant similarity, and how those inferences can
be confirmed, and then considers strategies that connect homology to more accurate
functional prediction.

INFERRING HOMOLOGY FROM SIMILARITY

The concept of homology—common evolutionary ancestry—is central to computational
analyses of protein and DNA sequences, but the link between similarity and homology is
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often misunderstood. We infer homology when two sequences or structures share more
similarity than would be expected by chance; when excess similarity is observed, the
simplest explanation for that excess is that the two sequences did not arise independently,
they arose from a common ancestor. Common ancestry explains excess similarity (other
explanations require similar structures to arise independently); thus, excess similarity
implies common ancestry.

However, homologous sequences do not always share significant sequence similarity;
there are thousands of homologous protein alignments that are not significant, but are
clearly homologous based on statistically significant structural similarity or strong se-
quence similarity to an intermediate sequence. Thus, when a similarity search finds a
statistically significant match, we can confidently infer that the two sequences are homol-
ogous, but if no statistically significant match is found in a database, we cannot be certain
that no homologs are present. Sequence similarity search tools like BLAST, FASTA, and
HMMER minimize false positives (nonhomologs with significant scores; Type I errors),
but do not make claims about false negatives (homologs with nonsignificant scores;
Type II errors). As is discussed below, it is often easier to detect distant homologs when
searching a smaller (<100,000–500,000 entry) database than when searching the most
comprehensive sequence sets (more than 10,000,000 protein entries). Likewise, when
domain annotation databases like InterPro and Pfam annotate a domain on a protein, it is
almost certainly there. But these databases can fail to annotate a domain that is present,
because it is very distant from other known homologs.

We infer homology based on excess similarity; thus, statistical models must be used to
estimate whether an alignment similarity score would be expected by chance. Today,
comprehensive protein databases contain tens of millions of sequences, the vast majority
of which are unrelated to an individual query. Thus, it is very easy to determine the distri-
bution of scores expected by chance, and it has been observed that unrelated sequences
have similarity scores that are indistinguishable from random sequence alignments. For
local sequence alignments, like those produced by BLAST, Smith-Waterman, or FASTA,
the expected distribution of similarity scores by chance (scores for alignments between
two random or unrelated sequences) is described by the extreme value distribution p(s ≥
x) ≤ 1 − exp[−exp(−x)] (Fig. 3.1.1), where the score “s” has been normalized to correct
for the scaling of the scoring matrix (UNIT 3.5) and the length of the sequences being
compared. To avoid these normalization issues, most similarity searching programs also
provide a score in bits, which can be converted in to a probability using the formula:

p(b ≥ x) ≤ 1 – exp(−mn2−x)

where m,n are the lengths of the two sequences being aligned. For scores with p()<0.01,
which will include any significant score in a database search, this expression can be
simplified to p(b ≥ x) = (mn2−x). However, the probability p(b) is not what is reported
by BLAST, FASTA, or SSEARCH, because it reflects the probability of the score in a
single pairwise alignment. Current search programs report the best scores after hundreds
of thousands to tens of millions of comparisons have been done; as a result BLAST and
other programs report the expected number of times the score would occur by chance—
the e-value, E()-value, or expectation value—after thousands or millions of searches. The
E()-value is E(b) ≤ p(b)D, where D is the number of sequences in the database. BLAST
actually uses a slightly different correction that has the same effect.

Because the expectation value depends on database size, an alignment score found by
searching 10,000,000-entry database will be 100-fold less significant than exactly the
same score found in a search of a 100,000 entry database. This does not mean that
sequences can be homologous in one context (the smaller search) but not in another.
If the alignment was significant in the smaller (and shorter) search, the sequences are
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Figure 3.1.1 The distribution of real and expected similarity scores. The human dual specificity
protein phosphatase 12 (DUS12 HUMAN) was compared to 38,114 human RefSeq proteins using
the SSEARCH program. The distribution of bit-scores (or standard deviations above and below the
mean 0) for all 38,114 alignments is shown (squares, ), as well as the mathematically expected
distribution of z-scores based on the size of the database, using the extreme-value distribution.
The close agreement between the observed and expected distribution of scores reflects the
observation that the distribution of unrelated sequence scores is indistinguishable from random
(mathematically generated) scores, so sequences with significant sequence similarity can be
inferred to be not-unrelated, or homologous.

homologous, but that homology may not be detected in the larger search because there are
100-fold more sequences that could produce high (but not significant) alignment scores
by chance. Sequences that share significant sequence similarity can be inferred to be
homologous, but the absence of significant similarity (in a single search) does not imply
nonhomology. For nonsignificant alignments, comparisons to an intermediate sequence,
or analysis with profile or HMM-based methods, can be used to demonstrate homology.

The most common reason homologs are missed is because DNA sequences, rather than
protein sequences (or translated DNA sequences), are compared. Protein (and translated-
DNA) similarity searches are much more sensitive than DNA:DNA searches. DNA:DNA
alignments have between 5- to 10-fold shorter evolutionary look-back time than pro-
tein:protein or translated DNA:protein alignments. DNA:DNA alignments rarely detect
homology after more than 200 to 400 million years of divergence; protein:protein align-
ments routinely detect homology in sequences that last shared a common ancestor more
than 2.5 billion years ago (e.g., humans to bacteria). Moreover, DNA:DNA alignment
statistics are less accurate than protein:protein statistics; while protein:protein alignments
with expectation values <0.001 can reliably be used to infer homology, DNA:DNA expec-
tation values <10−6 often occur by chance, and 10−10 is a more widely accepted threshold
for homology based on DNA:DNA searches. The most effective way to improve search
sensitivity with DNA sequences is to use translated-DNA:protein alignments, such as
those produced by BLASTX and FASTX, rather than DNA:DNA alignments.

Reliable homology inferences require reliable statistical estimates. The statistical es-
timates provided by BLAST, FASTA, SSEARCH, and other widely used similarity
searching programs are very reliable. But in unusual cases, which can appear scien-
tifically exciting, the statistical estimation fails, and unrelated sequences are assigned
statistical significance not because of homology, but because of statistical errors. When
a scientifically unexpected alignment appears to be statistically significant, investiga-
tors should consider alternate strategies for estimating statistical significance. Statistical
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estimates can be confirmed in two ways: (1) by attempting to identify the most similar
alignments to unrelated sequences and confirming that those alignments are not signifi-
cant; or (2) running additional searches with shuffled versions of the original sequences.

Since it is difficult to be certain that two sequences are unrelated, particularly for unex-
pected inferences of homology, strategy (1) above might seem impractical. Fortunately,
high-scoring alignments that happen by chance can be quite diverse, as they do not reflect
evolutionary relationships. Alignments between unrelated sequences will have very dif-
ferent domain content and structural classifications. By examining the domain structures
(and possibly structural classes) of high-scoring alignments, one can identify the highest
scoring unrelated sequences because sequence alignments with proteins containing un-
related domains must be unrelated. Accurate statistical estimates will give E()-values ∼1
to unrelated sequences (sequences with different domains); if unrelated sequences have
E()-values <0.001-0.01, then the scientifically novel relationship is suspect.

The second strategy—inferring significance from shuffled sequences with identical length
and composition—is much more straightforward, but it depends on the assumption that
shuffled sequences have similar properties to real protein sequences. This is certainly
true for most sequences, but the assumption may be weaker in the exceptional cases
that produce “novel” results. The most reliable shuffling strategies preserve local residue
composition, either by simply reversing one of the sequences or by shuffling the sequences
in local windows of 10 or 20 residues, which preserves local amino acid composition.
SSEARCH (UNIT 3.10) and the other members of the FASTA program package (UNIT 3.9)
offer statistical estimates based on shuffles that preserve local composition.

Homology (common ancestry and similar structure) can be reliably inferred from sta-
tistically significant similarity in a BLAST, FASTA, SSEARCH, or HMMER search,
but to infer that two proteins are homologous does not guarantee that every part of one
protein has a homolog in the other. BLAST, SSEARCH, FASTA, and HMMER calculate
local sequence alignments; local alignments identify the most similar region between
two sequences. For single domain proteins, the end of the alignment may coincide with
the ends of the proteins, but for domains that are found in different sequence contexts
in different proteins, the alignment should be limited to the homologous domain, since
the domain homology is providing the sequence similarity captured in the score. When
local alignments end within a protein, the ends of the alignment can depend on the scor-
ing matrix used to calculate the score. In particular, scoring matrices like BLOSUM62,
which is used by BLASTP, or BLOSUM50, which is used by SSEARCH and FASTA,
are designed to detect very distant similarities, and have relatively low penalties for mis-
matched residues. As a result, a homologous region that is 50% identical or more can be
extended outside the homologous domain into neighboring nonhomologous regions. This
is a common cause of errors with iterative methods like PSI-BLAST (Gonzalez and Pear-
son, 2010), but can be reduced by limiting extension in later iterations (Li et al., 2012).
The relationship between the similarity scoring matrix and alignment overextension is
discussed in UNIT 3.5.

E()-values, identity, and bits
While homology is inferred from excess similarity, and excess similarity is recognized
from statistical estimates [E()-values], most investigators are more comfortable describ-
ing similarity in terms of “percent identity”. Although a common rule of thumb is that
two sequences are homologous if they are more than 30% identical over their entire
lengths (much higher identities are seen by chance in short alignments), the 30% crite-
rion misses many easily detected homologs. While 30% identical alignments over more
than 100 residues are almost always statistically significant, many homologs are readily
found with E()-values <10−10 that are not 30% identical. Thus, E()-values and bit-scores



Finding
Similarities and
Inferring
Homologies

3.1.5

Current Protocols in Bioinformatics Supplement 42

(see below) are much more useful for inferring homology. When 6,629 S. cerevisiae
proteins were compared to 20,241 human proteins, 3,084 of the yeast proteins shared
significant [E()<10−6] similarity with a human protein, but only 2,081 of those proteins
were more than 30% identical. There are 19 yeast proteins whose closest human homolog
shares less than 20% identity [E()-values from 10−7–10−40; about an equal number are
>80% identical]. A 30% identity threshold for homology underestimates the number of
homologs detected by sequence similarity between humans and yeast by 33% (this is a
minimum estimate; even more homologs can be detected by more sensitive comparison
methods).

The bit-score provides a better rule-of-thumb for inferring homology. For average length
proteins, a bit score of 50 is almost always significant. A bit score of 40 is only significant
[E() < 0.001] in searches of protein databases with fewer than 7000 entries. Increasing the
score by 10 bits increases the significance 210=1000-fold, so 50 bits would be significant
in a database with less than 7 million entries (10 times SwissProt, and within a factor
of 3 of the largest protein databases). Thus, the NCBI Blast Web site uses a color code
of blue for alignment with scores between 40 to 50 bits, and green for scores between
50 to 80 bits. In the yeast versus human example, the alignments with less than 20%
identity had scores ranging from 55 to 170 bits. Except for very long proteins and very
large databases, 50 bits of similarity score will always be statistically significant and is
a much better rule-of-thumb for inferring homology in protein alignments.

While percent identity is not a very sensitive or reliable measure of sequence similarity–
E()-values or bits are far more useful—percent identity is a reasonable proxy for evo-
lutionary distance, once homology has been established. Like raw similarity scores,
bit-scores and E()-values reflect the evolutionary distance of the two aligned sequences,
the length of the sequences, and the scoring matrix used for the alignment (UNIT 3.5). An
alignment that is twice as long, e.g., 200 residues instead of 100 residues at the same
evolutionary distance, will have a bit score that is twice as high. Since the E()-value is
proportional to 2−bits, a two-fold higher bit-score squares the E()-value (10−20 becomes
10−40). For analyses that depend on evolutionary distance, percent identity provides a
useful approximation, but evolutionary distance is not linear with percent identity. The
evolutionary distance associated with a 10% change in percent identity is much greater
at longer distances. Thus, a change from 80% to 70% identity might reflect divergence
200 million years earlier in time, but the change from 30% to 20% might correspond to
a billion year divergence time change.

INFERRING FUNCTION FROM HOMOLOGY

Homologous sequences have similar structures, and frequently, they have similar func-
tions as well. But the relationship between homology and function is less predictable,
both because a single protein structure can have multiple functions (does chymotrypsin
have a different “function” from trypsin?) and because the concept of “function” is more
ambiguous (the same enzyme have “different” roles in two tissues because of different
concentrations of substrates).

Currently, the most popular strategy for inferring functional similarity is to focus on “or-
thologs,” typically understood as the same protein in different organisms. The concept
of “orthology” was originally introduced to distinguish two kinds of evolutionary histo-
ries: (1) homologous sequences that differ because of speciation events—orthologs; and
(2) homologous sequences that were produced by gene-duplication events—paralogs
(Koonin, 2005). Orthologs were initially recognized in phylogenetic reconstructions
because they could accurately reproduce the evolutionary histories of the organisms
where they were found. Because paralogs are duplicates that preserve the original gene
(presumably with the original function), paralogous proteins are more likely to acquire
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novel functions. But “novelty” very much depends on the level of functional specificity.
For example, trypsin and chymotrypsin are paralogous serine proteases with slightly
different substrate specificities, but many of their Gene Ontology terms do not capture
their functional differences; thus, they are paralogs that are functionally very similar.

Unfortunately, the terms “orthologous” and “paralogous” have been given different mean-
ings in different contexts. Their original phylogenetic definitions—orthology, same gene,
different organism; paralogy, duplicated genes—did not have clear functional implica-
tions. More recently, orthology has been associated with functional similarity (sometimes
in the absence of homology, e.g., functional orthologs), while paralogy has sometimes
been defined as functionally distinct (Gerlt and Babbitt, 2000). Perhaps because of the
greater interest in homologs with similar functions, the term orthologous has been applied
more generously than evolutionary analyses might support, and paralogous genes are as-
sumed to have different functions. From the evolutionary perspective, both orthologs and
paralogs are details about evolutionary history that have some ability to improve function
prediction, but for many protein families most paralogs have similar functions.

The problem of functional inference is exacerbated by the need to infer function at great
evolutionary distances; the average matches between mouse and human proteins share
about 84% identity, but yeast-human closest matches are about 30% identical on average.
It is easy to argue that two proteins that are more than 80% identical with conserved active
sites will share the same function, but more difficult to reliably infer similar function at
much longer evolutionary distances. For example, humans have three trypsin paralogs
to TRY1 HUMAN: TRY2 HUMAN and TRY6 HUMAN, which are both more than
90% identical, and TRY3 HUMAN, which is about 70% identical. In addition, there are
about 50 other paralogs that range from 45% to 25% identical. CTRB2 HUMAN is the
most similar chymotrypsin, at 38% identity. All these proteins share significant global
similarity and are identical at the three residues in the serine protease catalytic triad;
thus, we can infer that these paralogs share the serine protease function. Several studies
have shown that homologous sequences that share more than 40% identity are very
likely to share functional similarity as judged by E.C. (Enzyme Commission) numbers,
but counter-examples exist where a small number of residues in very similar proteins
are associated with dramatic changes in enzyme activity. Inferring functional similarity
based solely on significant local similarity is less reliable than inferences based on global
similarity and conserved active site residues.

FROM PAIRWISE TO MULTIPLE SEQUENCE ALIGNMENT

Pairwise sequence alignments, such as those calculated by BLAST, FASTA, and
SSEARCH, view the evolutionary structure of a protein or domain family from a single
perspective. Pairwise alignments produce very accurate statistical significance estimates,
so one can have great confidence when significant homologs are found. But the one-
sequence perspective has shortcomings as well; searches with models of protein families,
using either PSI-BLAST or Hidden Markov Model (HMM)–based methods, can identify
far more homologs in a single search at little additional computational cost. Moreover,
the multiple sequence alignments that are used to construct the position-specific scoring
matrices of PSI-BLAST or the Hidden Markov Models used by HMMER provide im-
portant information about the most conserved regions in the protein; locating conserved
regions in protein and domain families can dramatically improve predictions of the func-
tional consequences of mutation. Multiple sequence alignments thus provide much more
structural, functional, and phylogenetic information than pairwise alignments.

While multiple sequence alignments are much more informative, they cannot be used
to answer the first critical question about two sequences—are they homologous? The
inclusion of a protein into a multiple sequence alignment requires independent evidence
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for homology; multiple sequence alignment programs do not provide statistical estimates
and will readily align nonhomologous sequences (particularly nonhomologous sequences
that are highly ranked by chance in a similarity search). The assumption of homology
can be especially misleading with iterative methods like PSI-BLAST, because once a
nonhomologous domain has been included in the multiple sequence alignment used
to produce the position-specific scoring matrix, the matrix can become re-purposed
towards finding members of the nonhomologous family. Ideally, each sequence included
in a multiple sequence alignment will be evaluated both to ensure that it shares significant
similarity with some of the other members of the family, and that the boundaries of the
included sequence correspond with the boundaries of the domain homology.

Rigorously building a multiple sequence alignment is exponentially more computation-
ally expensive than pairwise alignment. Rigorous pairwise alignment algorithms require
time proportional to the product of two sequences [O(n2)], so increasing the sequence
lengths 2-fold increases the time required 4-fold. Fortunately, protein sequences have
a limited range of lengths, so rigorous searches (SSEARCH) are routine. In contrast,
the rigorous multiple sequence alignment of 10 sequences of length 400 would take
proportional to 40010 and 100 sequences would take O(400100), so rigorous multiple
sequence alignment is impractical. During the 1980s, progressive alignment strategies,
like ClustalW (Larkin et al., 2007; UNIT 2.3) were developed that simplified the problem
to O(n2l2), where n is the number of sequences, and l is their average length. These early
progressive alignment strategies suffered from the problem that gaps placed early on in
the alignment could not be re-adjusted to reflect information from sequences aligned later.
More recent multiple sequence alignment methods, like MAFFT (Katoh et al., 2002) and
MUSCLE (Edgar, 2004), use iterative approaches that allow gaps to be re-positioned.

There is a much greater diversity of multiple sequence alignment algorithms than pair-
wise sequence alignment algorithms, largely because optimal pairwise solutions are
readily available, but multiple sequence alignment strategies use different heuristic ap-
proximations. While different multiple sequence alignment programs will often produce
modestly different results, most programs produce very similar results for sequences at
modest evolutionary distances (greater than 40% identity), and the differences are found
near the boundaries of gaps. A more common problem is multiple sequence alignments
with large gaps, which may reflect the presence or absence of domains in a subset of the
sequence set. Alignment only makes biological sense when the residues included in the
alignment are homologous. Large differences in sequence length, or attempts to multiply
align sequences that are locally, but not globally, homologous can produce very different
results because the programs are aligning nonhomologous domains.

SUMMARY

BLAST, FASTA, SSEARCH, and other commonly used similarity searching programs
produce accurate statistical estimates that can be used to reliably infer homology. Searches
with protein sequences (BLASTP, FASTP, SSEARCH,) or translated DNA sequences
(BLASTX, FASTX) are preferred because they are 5- to 10-fold more sensitive than
DNA:DNA sequence comparison. The 30% identity rule-of-thumb is too conservative;
statistically significant [E() < 10−6 – 10−3] protein homologs can share less than 20%
identity. E()-values and bit scores (bits >50) are far more sensitive and reliable than
percent identity for inferring homology.

With the rise of whole-genome sequencing, protein sequence databases are both com-
prehensive and large. It is rarely necessary to search complete sequence databases to
find close-homologs; more sensitive searches can be limited to complete protein sets
from evolutionarily close organisms. Because of its sensitivity and the slower changes
in protein sequences, protein similarity searching can easily detect vertebrate homologs,
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almost all homologous sequences that have diverged in the past 500 million years (bila-
teria), and a very large fraction of the sequences that diverged in the past billion years.
The most efficient and sensitive searches will focus on well-annotated model organisms
sharing a common ancestor that diverged in the past 500 million years.

Because of the abundance of relatively closely related (>40% identical) sequences in
comprehensive databases, the accuracy and location of annotation can often be more im-
portant than finding the closest homolog. The SwissProt subset of the UniProt database
is unique in providing comprehensive information on modified residues, active sites,
variation, and mutation studies that allow more accurate functional prediction from
homologous alignments. Once an homologous protein or domain has been found, estab-
lishing the state of functionally critical residues (and ensuring that functional domains are
part of the alignment) can greatly decrease errors produced by simply copying the name
(and function) of the reference protein to the query sequence. Similarity searches that use
statistical significance to well-curated sequences provide the most accurate functional
predictions.
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