
Exploring the Relationship between Sequence Similarity and Accurate
Phylogenetic Trees

Brandi L. Cantarel,* Hilary G. Morrison,� and William Pearson*
*Department of Biochemistry and Molecular Genetics, University of Virginia and �Josephine Bay Paul Center for Comparative
Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts

We have characterized the relationship between accurate phylogenetic reconstruction and sequence similarity, testing
whether high levels of sequence similarity can consistently produce accurate evolutionary trees. We generated protein
families with known phylogenies using a modified version of the PAML/EVOLVER program that produces insertions
and deletions as well as substitutions. Protein families were evolved over a range of 100–400 point accepted mutations; at
these distances 63% of the families shared significant sequence similarity. Protein families were evolved using balanced
and unbalanced trees, with ancient or recent radiations. In families sharing statistically significant similarity, about 60% of
multiple sequence alignments were 95% identical to true alignments. To compare recovered topologies with true topol-
ogies, we used a score that reflects the fraction of clades that were correctly clustered. As expected, the accuracy of the
phylogenies was greatest in the least divergent families. About 88% of phylogenies clustered over 80% of clades in families
that shared significant sequence similarity, using Bayesian, parsimony, distance, and maximum likelihood methods. How-
ever, for protein families with short ancient branches (ancient radiation), only 30% of the most divergent (but statistically
significant) families produced accurate phylogenies, and only about 70% of the second most highly conserved families,
with median expectation values better than 10�60, produced accurate trees. These values represent upper bounds on ex-
pected tree accuracy for sequences with a simple divergence history; proteins from 700 Giardia families, with a similar
range of sequence similarities but considerably more gaps, produced much less accurate trees. For our simulated insertions
and deletions, correct multiple sequence alignments did not perform much better than those produced by T-COFFEE, and
including sequences with expressed sequence tag–like sequencing errors did not significantly decrease phylogenetic ac-
curacy. In general, although less-divergent sequence families produce more accurate trees, the likelihood of estimating an
accurate tree is most dependent on whether radiation in the family was ancient or recent. Accuracy can be improved by
combining genes from the same organism when creating species trees or by selecting protein families with the best boot-
strap values in comprehensive studies.

Introduction

Despite the expectation that abundant genome and ex-
pressed sequence tag (EST) sequence data would produce
better evolutionary histories, particularly for organisms
from deep branches in the ‘‘tree of life,’’ phylogenies based
on genome-scale data are often inconsistent (de la Cruz
and Davies 2000; Eisen 2000; Ochman et al. 2000; Jain
et al. 2003). One explanation for inconsistent bacterial phy-
logenies is a high frequency of lateral gene transfer (LGT)
(Doolittle 1999;Mirkin et al. 2003),which has led some evo-
lutionary biologists to questionwhether life can bemeaning-
fully represented as a tree. LGT is recognized as a major
evolutionary mechanism (Doolittle 1998; Lopez-Garcia
and Moreira 1999; Campbell 2000), which is inferred when
a homolog from a distantly related species is more similar
than homologs from more closely related species or when
trees from different gene families in the same organisms
are inconsistent. True instances of LGT can be quite difficult
to distinguish from artifacts of computational methods, such
as long-branch attraction (LBA), biased taxon sampling, or
gene loss (Eisen 2000). Problems caused by biased taxon
sampling shouldbe reducedasmoregenomesare sequenced.

Compared with LGT, computational artifacts such as
LBA provide a less provocative explanation for inconsistent
phylogenies. LBA can result in the grouping of the fastest
evolving taxa, irrespective of their true phylogenies
(Felsenstein 1978), and is expected for sequences from

deeply branching or rapidly evolving organisms. LBA can
be reducedby increasingormodifying the taxonomic sample
(Hillis 1996; Graybeal 1998; Hillis 1998; Zwickl and Hillis
2002), by focusingonslowlyevolvingpositions (Felsenstein
1978; Olsen 1987; Brinkmann and Philippe 1999), and by
improving the model of sequence evolution (Lockhart
et al. 1996; Yang 1996; Hirt et al. 1999; Van de Peer
et al. 2000). In general, LBA is thought to play a less impor-
tant role than LGT when large numbers of proteins, some of
which share strong sequence similarity, are considered.

It has been difficult to estimate the relative importance
of LGT (biological) and LBA (methodological) as explan-
ations for inconsistent trees, in part because we do not know
how often phylogenetic methods fail for sequences that
evolved vertically, and that can be identified by widely used
sequence comparison methods like Blast (Altschul et al.
1990) andFASTA(PearsonandLipman1988). In this paper,
we explore the relationship between sequence similarity and
phylogenetic accuracy fromvarious tree topologies and evo-
lutionary models using protein sequences that share statisti-
cally significant similarity (i.e., that could be identified in
a similarity search).We created simulated gene families over
a broad rangeof evolutionarydistances, using simplemodels
of rate variation and gap insertion, and measured the accu-
racy of phylogenetic estimationmethods.Wewere surprised
to find that despite our simple evolutionarymodels, 10–40%
of the reconstructed trees were less than 80% accurate, even
for very highly conserved simulated protein families.

Methods
Generating Protein Families

Protein families were created using a modified version
of EVOLVER (Yang 1997; Yang et al. 1998), a program
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that evolves sequences along a specific tree. EVOLVER
was modified to generate insertions and deletions using
the Benner model (Benner et al. 1993). We used the codon
evolution model in EVOLVER, which requires a root se-
quence length, an input tree, and codon frequencies. Protein
sequence lengths were chosen from a normal distribution
with mean 468 6 173, derived from protein sequence
lengths of 11 completely sequenced eukaryotic genomes.
We sought a range of evolutionary distances comparable
with those likely to be encountered when characterizing
proteins from primitive eukaryotes, with point accepted
mutation (PAM; Dayhoff et al. 1972, 1978) values ranging
from 100 to 400, which correspond to EVOLVER total
branch lengths from 2.85 to 11.4. The EVOLVER input
branch lengths were determined empirically by producing
protein families over a range of branch lengths, aligning the
members of the family, and calculating the PAM distance of
the most distant members. Codon frequencies were calcu-
lated from the mRNA sequences of 6 completely sequenced
eukaryotic genomes (Apis mellifera, A. thaliana, Encepha-
litozoon cuniculi, Plasmodium falciparum, Saccharomyces
cerevisiae, and Schizosaccharomyces pombe). Otherwise,
the default parameters were used: omega (dN/dS) 5 0.3,
kappa (transition/transversion)5 5, and a uniform distribu-
tion of rate variation along the codon sites. Because deep
phylogenies are more accurately estimated with protein
than with DNA (at distances greater than PAM50, the un-
derlying DNA sequences would not share statistically sig-
nificant sequence similarity), genes were translated into
protein sequences (Hall 2005).

Assessing Evolutionary Distances

To characterize the diversity of each protein family, all
its members were compared using PRSS (Pearson and
Lipman 1988), which estimates the statistical significance
of a sequence similarity by shuffling one of the sequences.
The expectation value (E(�) value) calculated by PRSS is
equivalent to the E(�) value calculated by Blast; it reports
the number of times a similarity score is expected to occur
by chance in a database search against a sequence database
of specified size. Here, we report E(10,000)—the number of
times an alignment score would be found by chance in
a search of a 10,000 entry database. The protein families
in this study have either 8 (unbalanced trees) or 16 (balanced
trees) members. For each of the 8 (or 16) members of a fam-
ily, 7 (or 15) pairwise expectation values were calculated.
The median expectation value for the family is the lowest
(most significant or most closely related) of the 8 (or 16) me-
dian expectation values of the individual family members.

Multiple Sequence Alignment Accuracy Analysis

Protein families were aligned using T-COFFEE
(Notredame et al. 2000). True multiple sequence align-
ments were created using the known positions of changes
at homologous sites produced by EVOLVER. Multiple
alignment accuracy was evaluated with the VerAlign com-
parison software, which is available at www.ibivu.cs.vu.nl/
programs/veralignwww/ (Simossis et al. 2005). VerAlign
calculates a sum-of-pairs (SOP) score that reports the
number of correctly aligned residues in each of the pair-

wise residue alignments implied by the multiple sequence
alignment.

Phylogenetic Trees of Synthetic Families

Phylogenies were constructed using 4 methods: 1) dis-
tance (PHYLIP—Fitch, Fitch and Margoliash 1967;
Felsenstein 1993), 2) maximum parsimony (PHYLIP—
Protpars, Eck andDayhoff 1966; Felsenstein 1993), 3) max-
imum likelihood (PHYML, Guindon and Gascuel 2003),
and 4) Bayesian inference (MrBayes, Ronquist and
Huelsenbeck 2003). For distance trees, each multiple se-
quence alignment of a protein familywas used tomake a dis-
tance matrix using PROTDIST (Felsenstein 1993), with the
Jones–Taylor–Thornton method of amino acid replacement
(Jones et al. 1992). Maximum likelihood (PHYML) recon-
struction used Jones–Taylor–Thornton protein rate matrices
and included the default gamma parameter for an ‘‘average’’
distribution of evolutionary rate variation over the protein
sites (Guindon and Gascuel 2003). Bayesian analysis used
PAM250 rate matrices (Dayhoff et al. 1978) and was done
with and without including gamma-distributed rate varia-
tion across the sites. Bootstrap analysis (Felsenstein 1985)
was performed using maximum likelihood.

Tree Evaluation

Tree accuracy was evaluated using 2 programs:
TREEDIST (Felsenstein 1993) and TREESCORE (this
work). TREEDIST calculates 2 measures of tree accuracy:
symmetric difference (Robinson and Foulds 1981) and
branch score difference (Kuhner and Felsenstein 1994).
Symmetric difference measures the differences in the topol-
ogy of 2 trees, whereas the branch score difference mea-
sures differences in topology and branch length as a root
sum of squares. We normalized both distances by dividing
them by the corresponding maximum distances of trees
with random topologies.

Similar to CompareTree (Hall 2005), we also devel-
oped a measure of tree accuracy that directly counts the cor-
rect number of clades—TREESCORE. Each ancestor node
and its descendents in the model tree represent a clade. The
TREESCORE is the ratio of the number of correct clades
contained in the estimated tree divided by the maximum
possible number of clades. Clades containing only 2 leaf
sequences were weighted half, to focus the measure on
deeper clades that are more difficult to reconstruct. Thus,
for a balanced unrooted tree (fig. 1A) with 16 taxa, the max-
imum number of correct clades is 9. For the unbalanced un-
rooted tree in figure 1C, the maximum number of correct
clades is 4. In the analysis of the Giardia families, the ‘‘cor-
rect’’ clades are deep, so leaf cladeswere not downweighted.

Giardia Phylogenies

For purposes of high-throughput phylogenetic tree
generation for Giardia, each open reading frame (Morrison
et al. 2004) was individually searched against a custom ref-
erence protein database using BlastP, with the BLOSUM62
substitution matrix, and default parameters (Altschul et al.
1990). For purposes ofmultiple sequence alignment, a single
putative ortholog was retained from each reference genome
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if it had a Blast expectation value � 10�10. Multiple align-
ments were preformed with T-COFFEE. Phylogenies were
estimated using Mr. Bayes (Ronquist and Huelsenbeck
2003) or PHYML (Guindon and Gascuel 2003). Trees were
assessed with TREESCORE with the following clades: an-
imals (Caenorhabditis elegans and Mus musculus), plants
(A. thaliana and Oryza sativa), bacteria (Aquifex aeolicus,
Escherichia coli, and Rickettsia prowazekii), apicomplexans
(Cryptosporidium parvum, P. falciparum, and Toxoplasma
gondii), kinetoplastids (Leishmania major, Trypanosoma
cruzi, and Trypanosoma brucei), fungi (S. cerevisiae and
Cryptococcus neoformans), stramenopiles (Phytophthora
sojae, Phytophthora ramorum, and Thalassiosira pseudo-
nana), archaea (Archaeoglobus fulgidus and Sulfolobus
solfataricus), and plants/algae (Oryza sativa, A. thaliana,
and Chlamydomonas reinhardtii).

Synthetic EST Sequences

To examine the effect of EST errors in phylogeny es-
timation, we added additional substitution and insertion/
deletion errors to the DNA sequences produced by
EVOLVER and truncated the sequences to produce simu-
lated ESTs. EST error rates were estimated by comparing
Giardia lamblia EST sequences with the Giardia lamblia
Genome Database (Morrison et al. 2004) using FASTA
(Pearson and Lipman 1988) with match/mismatch 11/
�3 and gap penalties �12/�4. Alignments were analyzed
for the number of mismatches, insertions, and deletions in
the EST sequences compared with the genome sequence.
EST sequences had about 2.4% substitutions per read with
0.075% insertions and 0.053% deletions. Assembled con-
tigs had about one-third as many errors (0.72%, 0.032%,
and 0.018%). DNA sequences from each protein family
were mutated according to an EST-like or EST-contig–like
model. Because truncations of EST sequences occur at the
5# end, sequence truncation was incorporated into the
model, based on the EST truncations seen in Giardia
EST sequences. Only 16% of ESTs aligned with the N ter-
minus of the protein; 36% aligned over 75% of the protein’s
length; 56% aligned over half the protein; and 84% of the
ESTs covered at least 25% of the protein-coding region.We
also considered a ‘‘limited truncation model,’’ in which the

EST started and ended randomly within the protein-coding
region (based on the distribution of Giardia EST align-
ments), but ESTs were excluded if less than 50% of the pro-
tein was aligned. Protein translations were determined by
comparing the sequence with other members in the family
using FASTY (Pearson et al. 1997).

Sequence Concatenation

We generated 2 data sets of concatenated sequences.
Proteins were concatenated from the same taxa evolved un-
der the same tree topologies and model trees. In addition,
we concatenated sequences that were evolved to the same
evolutionary distance. These concatenated sequences were
then analyzed as individual sequences.

Results

Because many phylogenomic studies rely on large-
scale alignments of protein and DNA sequences that were
identified by sequence similarity searches, we explored the
relationship between sequence similarity and phylogenetic
accuracy. We generated 2,400 protein sequence families
from 48 model trees produced from 1) 4 tree topologies
(fig. 1), 2) 3 radiation models, and 3) 4 evolutionary distan-
ces. The tree topologies consisted of two 16-taxon balanced
(fig. 1A and B) and two 8-taxon unbalanced (fig. 1C and D)
topologies; to preserve the distribution of internode distan-
ces, the unbalanced trees had fewer taxa. Branch lengths
were specified using 3 radiation models: recent, uniform,
and ancient. Recent radiation protein families have more
evolutionary change before speciation events (fig. 1A), re-
sulting in longer internal branches and shorter ‘‘leaf’’
branches. In recent radiation families, daughter branches
were half the evolutionary distance of the parent branch,
whereas in ancient radiation families (fig. 1C), daughter
branches were twice as long as the parent. Ancient radiation
trees are expected to be the most difficult to reconstruct ac-
curately because of their short internal branches. The evo-
lutionary distance of the internal branches provided to
EVOLVERwas constant for uniform radiation protein fam-
ilies, but EVOLVER introduces variation into the branch
lengths of the trees it generates (fig. 1B). Even though there
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FIG. 1.—Model tree topologies. EVOLVER trees produced from the 4 topologies used in this study. (A, B) Balanced tree topologies and (C, D)
asymmetrical tree topologies with (A) recent, (B, D) uniform, and (C) ancient radiation. The differences in branch lengths in each of the panels, but
particularly (B), and (D), reflect the random variation in branch lengths produced by the EVOLVER program.
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is a strong correlation between branch lengths provided to
the EVOLVER program and evolutionary distances of the
resulting trees, the rate variation used by EVOLVER can
produce phylogenies with distributions of evolutionary dis-
tance that partially obscures the evolutionary model (fig. 1D).

To explore the relationship between measured se-
quence similarity and phylogenetic accuracy, target evolu-
tionary distances for the most distant sequences in the
family ranged from 100 to 400 PAMs (Dayhoff et al.
1972, 1978). Protein families were grouped by median ex-
pectation value from the most divergent to the least diver-
gent. About 37% of sequences did not share statistically
significant sequence similarity and therefore would not
have been found with a Blast search (Altschul et al.
1990). The remaining families, which shared significant
median sequence similarity, were split into quintiles, from
least similar (Q1) to most similar (Q5). As expected, groups
with the best statistical significance (fig. 2A) had the lowest
sequence divergence (fig. 2B). All 6 groups have similar
distributions of lengths (fig. 2C), with the exception of
the least divergent quintile (Q5), which had longer sequen-
ces, on average. Because we grouped families by median
statistical significance, which depends both on sequence
similarity and sequence length, quintiles overlap in their
ranges of PAM distance. In addition to the sequence vari-
ation produced by the EVOLVER program codon model,
we introduced insertions and deletions into the protein se-
quences, using parameters estimated by Benner et al.
(1993), based on structural alignments (fig. 2D).

To confirm that our simulated protein families span
a range of evolutionary distances similar to those likely
to be encountered in a challenging eukaryotic data set,
we examined 705 Giardia proteins with statistically signif-
icant homologs in 6 of 9 groups of organisms. The distri-
butions of statistical significance, evolutionary distance,
length, and ungapped alignment lengths for the Giardia
protein families are also shown in figure 2. The conserved
Giardia protein families show a distribution of sequence
similarity and evolutionary distance that is very similar
to the overall distribution of similarity and distance of
our synthetic families that share statistically significant sim-
ilarity (fig. 2, comparing1 total with d Giardia). However,
the Giardia proteins have substantially shorter regions of
ungapped sequence in the multiple alignments than the
synthetic proteins do (fig. 2D). This presumably reflects do-
main insertions inGiardia and deletions, which are not part
of the Benner insertion/deletion model.

The median similarity characterizes the ‘‘average’’
properties of each protein family; however, the ability of
a family to reconstruct a phylogenetic tree accurately may
depend more on the most distant members of the family. Ta-
ble 1 summarizes the radiation models—ancient, uniform, or
recent—in the different quintile groups and the statistical
significance of the most distant members in each quintile.
Thus, 72% of the proteins in the most distant quintile
(Q1) were produced with either the ancient or the re-
cent radiation model; the remaining families came from
the uniform model. Surprisingly, 14% of the least divergent

0

0.2

0.4

0.6

0.8

1.0

1008020 40 60

-log(E())

C
um

ul
at

iv
e 

Fr
ac

tio
n

A

200 3001000

PAM Distance

0

0.2

0.4

0.6

0.8

1.0

2000 600400 800 1000

Length

0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

Fr
ac

tio
n

C

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

Percent Of Alignment Ungapped

D

B

NS
Q1
Q2

Total
Giardia

Q3
Q4
Q5

0

FIG. 2.—Ranges of sequence similarity and evolutionary distance. In all, 2,400 protein families, created using different divergence models and
topologies, were divided into 6 groups based on median expectation value (diversity). Two measures of diversity are shown: (A) statistical significance
in expectation value and (B) similarity in PAM distance. Panel (C) shows the distribution of family lengths in each group. (D) The median ungapped
multiply aligned region divided by the median protein length, for each family. Sequences that do not share statistically significant median sequence
similarity (NS) are represented by open circles (s). Quintiles of sequences that have statistically significant median similarity are indicated by least
similar (Q1, P), second least similar (Q2, 4), third least similar (Q3, )), fourth least similar (Q4, h), and most similar (Q5, ). The distribution
for all simulated gene families that have significant median expectation values is shown (1), as are the Giardia families (d) found in 6 of 9 taxon groups.
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families produced with the recent radiation model have at
least 1 pair of members that lacks statistically significant
similarity (E(�) . 10�3). In practice, these family mem-
bers could be identified through transitive homology or with
a profile sequence similarity program like PSI-Blast
(Altschul et al. 1997). More of the ancient radiation protein
families fall in the not-significant category; as a result, in all
the significant quintiles, there are higher percentages of fam-
ilies from uniform or recent radiation models.

Multiple Sequence Alignment Accuracy

Sequence-based phylogenetic reconstruction strategies
require multiple sequence alignments; inaccurate multiple
alignments are often proposed to explain inconsistent phy-
logenies. To assess the multiple sequence alignment accu-
racy at different evolutionary distances, we compared our
estimated T-COFFEE alignments with the true multiple se-
quencealignments recordedas the familieswereproducedby
EVOLVER.Sequence families that didnot share statistically
significant sequence similarity, and thus would not have
been detected in a Blast search, were poorly aligned with
T-COFFEE (fig. 3). More than half of these estimated align-
ments had SOP scores that were 60% of the scores produced
by true alignments. However, over 90% of families with sta-
tistically significant sequence similarity had SOP scores
greater than 80% of the true alignment (fig. 3). As expected,
the estimated alignments lookmore like the true multiple se-
quence alignments as the amount of divergence decreases.

Phylogenetic Accuracy

To determine the relationship between evolutionary
distance and tree accuracy, we estimated phylogenies for
our simulated families using 4 different methods: 1)
distance (fig. 4A), 2) parsimony (fig. 4B), 3) maximum
likelihood (fig. 4C), and 4) Bayesian (fig. 4D). Our
TREESCORE threshold for accuracy was 0.80; phyloge-
nies at that score have only 1 (for 8-taxon families) or 2
(for 16-taxon families) incorrectly grouped clades within
the tree. More than 95% of the recent radiation families—
families with longer ancient branches—were more than
80% accurate (fig. 4) over the entire range of sequence sim-
ilarities, including families whose members did not share
statistically significant similarity. For ancient radiation

families—families with short ancient branches—80% accu-
racy was achieved in only 15–50% of the most divergent
families that shared statistically significant similarity, de-
pending on the phylogenetic reconstruction method used.
Sixty to 90% of families from the uniform radiation
model produced 80%accurate trees from themost divergent,
but statistically significant, quintile (fig. 4C). All 4 tree-
buildingmethods produced similar trends,with eachmethod
performing better with some radiation models at some
distances.

We measured phylogenetic accuracy by 3 ways: sym-
metric tree distance (Robinson and Foulds 1981), branch
score difference tree distance (Kuhner and Felsenstein
1994), and TREESCORE. Figure 5 shows the results for
maximum likelihood trees, but similar results are found
with distance, parsimony, and Bayesian phylogenies as
well (data not shown). For each measure of accuracy, more
closely related protein families produce more accurate trees.
However, it can be difficult to correlate TREEDIST distan-
ces to the number of correct clades. Because biologists are
interested in the number of clades, we evaluated a metric
that measures this directly. TREESCORE gives a distribu-
tion of scores (fig. 5C) similar to the symmetric tree distan-
ces calculated by TREEDIST (fig. 5A), and those scores
increase as the diversity of the protein families decreases.

To evaluate the ability of our simulated families to
reproduce the phylogenetic accuracy of actual protein

Table 1
Characteristics of Protein Family Groups

Radiation Model

Fraction of Families
from Radiation

Modela

Fraction of Families
with a Nonsignificant

Alignmentb

Group E(10,000) Ancient Uniform Recent Ancient Uniform Recent

Q1 1 3 10�6 0.28 0.43 0.28 0.21 0.41 0.24
Q2 1 3 10�19 0.33 0.39 0.29 0.01 0.11 0.04
Q3 1 3 10�31 0.34 0.37 0.29 0.00 0.02 0.07
Q4 1 3 10�61 0.29 0.31 0.40 0.00 0.00 0.14
Q5 1 3 10�94 0.16 0.28 0.56 0.00 0.00 0.14

a Fraction of families from each of the 3 radiation models. Each quintile contains

300 protein families.
b Fraction of families with at least one pairwise alignment with a nonsignificant

alignment (E(10,000) . 10�3).
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FIG. 3.—Multiple sequence alignment accuracy. Sequence families
were aligned with T-COFFEE. The resulting alignments were compared
with the true alignment with VERALIGN. SOP is the sum of pairs, which
is number of columns that differ between the inferred and the correct align-
ment (regardless of whether they contain residues or gap characters), di-
vided by the number of columns in the alignment, summed over all the
pairwise alignments. Plots were drawn using the ‘‘R’’ box plot() function,
which shows the median, 25% and 75% percentiles and draws whiskers at
1.5 times the interquartile (25–75%) range. The asterisks indicate outliers—
individual families outside the whiskers.
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families, we estimated phylogenies withGiardia open read-
ing frames and their non-Giardia homologs using TREE-
SCORE (figs. 5D and 6). Despite having a range of
sequence similarities that is quite similar to the range of di-
versity seen in our statistically significant synthetic protein
families,Giardia phylogenies are significantly less accurate
in each of the similarity quartiles (fig. 5D). Giardia protein
families have TREESCORE accuracies similar to those
seen in the least statistically significant quintile (Q1) of
our synthetic families (fig. 6). For example, 23% of phylo-
genetic trees built from Giardia families were at least 80%
correct, compared with the 22% of ancient radiation Q1
families and 46% of Q2 families, using maximum likeli-
hood. Thus, the Giardia protein family trees are substan-
tially less accurate than one would expect, based on their
statistical significance or expectation value. The lower con-
sistency of the Giardia phylogenies presumably reflects the
larger number of gaps in these sequences and the shorter
ungapped regions (fig. 2D).

In addition to median sequence similarity, we charac-
terized other properties of the Giardia protein homologs to
see if we could identify a subset of proteins that were more
likely to produce accurate evolutionary trees. We character-
ized the diversity of each family by estimating the statistical
significance of sequence similarities of every pairwise align-
ment in the family and found that all the Giardia protein
family members shared significant similarity, but families
with the stronger sequence similarity produced considerably
more accurate trees than the more divergent families (fig.

5B). We did not find a strong correlation between the length
of ungapped regions and tree accuracy (data not shown).

Including Truncated Sequences Decreases Phylogenetic
Accuracy

Because EST sequences can be readily and cheaply
obtained, they are often included in phylogenetic analysis.
But EST sequences also contain errors, so we examined the
effect of including EST sequences in our phylogenetic anal-
yses. For each of our 2,400 protein families, 1 mRNA se-
quence was altered using an EST-contig–like error model or
an EST-like model (Methods, fig. 7). Phylogenies were es-
timated using maximum likelihood and evaluated with
TREESCORE. We sometimes saw a small decrease in
the accuracy of phylogenies produced from families with
EST-contig–like sequences (fig. 7, dashed line). However,
if we limited the truncation to less than 50% of the sequence
length, we observed no decrease in phylogenetic accuracy
for contig sequences (data not shown). Sequences evolved
under a limited truncation EST-like model showed a slight
decrease in accuracy for families in Q4 (fig. 7, dotted line)
but resembled accurate full-length sequences otherwise.
Thus, truncation can reduce accuracy; fortunately, trun-
cated sequences are readily identified in sequence align-
ments and thus can be excluded.

Strategies for Improving Phylogenetic Accuracy

For many ancient radiation sequence families that
share statistically significant similarity, the probability of

B   Parsimony

0

0.2

0.4

0.6

0.8

1.0

NS

Evolutionary distance

0

0.2

0.4

0.6

0.8

1.0

Evolutionary distance

NS

D   Bayesian

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5

0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

T
S

≥0
.8

NS Q1 Q2 Q3 Q4 Q5

A   Distance

Evolutionary distance

0

0.2

0.4

0.6

0.8

1.0

C   Maximum Likelihood

Evolutionary distance

NS

Fr
ac

tio
n 

T
S

≥0
.8

Q1 Q2 Q3 Q4 Q5

FIG. 4.—Phylogenetic accuracy assessment. For each gene family, phylogenies were estimated using 4 methods: (A) distance, (B) parsimony,
(C) maximum likelihood, and (D) Bayesian. Shown are the fractions of families with TREESCOREs greater than 0.80, grouped according to median
expectation value (Q1–Q5) and radiation model: recent (;), uniform (n), and ancient (:). Open symbols show families with nonsignificant median
expectation values.
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reconstructing an accurate phylogeny was low. Therefore,
we examined 3 methods to increase phylogenetic accuracy:
using sequence concatenation (fig. 8A and B), correct align-
ments (fig. 8C), and bootstrapping (fig. 8D).

Increasing sequence size can improve phylogenetic re-
construction (Miyamoto 1985; Kluge 1989; Hillis 1996;
Nixon and Carpenter 1996; Graybeal 1998; Hillis 1998;
Zwickl and Hillis 2002). Because it is much more difficult
to reconstruct phylogenies accurately after ancient radia-
tion, we investigated how the accuracy would improve
when sequences were concatenated. We examined 2 differ-
ent concatenation strategies. First, 5 families that shared the
same radiation model and target evolutionary distance,
from each of the 48 model trees, were concatenated to cre-
ate 10 supermatrices per model tree (fig. 8A). Phylogenies
were estimated with maximum likelihood and evaluated
with TREESCORE. For families evolved using the ancient
radiation model, the number of accurate phylogenies in-
creased significantly, from about 63% to 81% correct
(fig. 8A, A-I vs. A-C). In the already more accurate phylog-
enies produced from the uniform and recent radiation fam-
ilies, smaller improvements were seen.

We were concerned that tree accuracy had improved
with concatenation because the more distant families were
combined with less distant families. Hence, we also concat-
enated sequences that were evolved under the same topol-
ogy to the same final evolutionary distances (fig. 8B).
Because there were fewer families that met these criteria,
only 2 sequences were concatenated. Again, the number

of accurate phylogenies increased significantly. For sequen-
ces in quintile Q2, the number of accurate phylogenies in-
creased 50% (fig. 8B). Protein families in the 3 least distant
quintiles showed about a 10% increase in accuracy when 2
sequences were concatenated.

Phylogenetic reconstruction begins with multiple se-
quence alignments, so we asked whether correct multiple
sequence alignments produced substantially better phylog-
enies than calculated alignments. We constructed true
alignments based on the positions of insertions and dele-
tions of each sequence and their ancestor sequences. Phy-
logenies were estimated and scored as in figure 4C. We
would expect that for families with poor estimated align-
ments, NS and Q1, phylogenetic accuracy would increase
given the true alignment. Yet, although in some instances
we were able to reconstruct a more accurate phylogeny us-
ing the true alignment, the differences were minimal even
for the most distantly related protein families (Q1, fig. 8C).

In addition, because protein families from our ancient
radiation model often produced incorrect trees, we sought
a measure of tree reliability that would help us identify
the trees that aremore likely to be correct. Bootstrap analysis
andBayesianposterior probabilities are used inphylogenetic
analysis to determine the robustness of a phylogenetic pre-
diction, so we used these scores to stratify the protein
families examined in our analysis. Bootstrap scores were
calculated by averaging the bootstrap values from 100
sample data sets of the internal nodes. Posterior proba-
bility scores were calculated by averaging the posterior

FIG. 5.—Phylogenetic accuracy. Phylogenies were estimated by maximum likelihood, PHYML, and scored according to (A) TREEDIST—
symmetric difference, (B) TREEDIST—branch score difference, and (C) TREESCORE. The protein families were divided into 6 groups as in figure 2.
(D) TREESCORE distributions for Giardia protein, separated into Q1–Q5 quintiles using the expectation value ranges used for the synthetic families
in the figures 2–4.
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probabilities of the internal nodes. Trees with average boot-
strap scores greater than 0.80 across all taxa have more phy-
logenies that are accurate (fig. 8D, triangle), particularly for
families in Q2 and Q3 (70% increase). Similarly, trees with
the lowest variance among their bootstrap values at the in-
ternal nodes were accurate more often (data not shown).
Overall, when families that do not have a bootstrap score
greater than 0.80 were removed, accuracy increased from
56% to 62%. Similarly, trees with the highest average
posterior probabilities were more likely to be accurate (data
not shown).

Discussion

We have explored the limits of phylogenetic recon-
struction by assessing the probability of estimating a correct
phylogenetic tree for diverse protein families evolved using
different radiation models. As expected, as sequence sim-
ilarity increases, multiple sequence alignment accuracy
increases. Phylogenies of protein families evolved under
a uniform radiation model are estimated accurately at di-
verse DNA distances using various phylogenetic algo-
rithms (Hall 2005). However, Hall’s study did not
examine accuracy under more challenging radiation mod-
els. In this study, about 90% of alignments and 80% of phy-
logenies from families with a uniform or recent radiation
evolutionary history that share statistically significant se-
quence similarity (i.e., those that would have been identi-
fied by a Blast search) are accurate. As expected (Fiala and

Sokal 1985; Salisbury 1999), although protein families
from uniform and recent radiation tree topologies fre-
quently produced accurate estimates of the original phylog-
eny, phylogenies of proteins from ancient radiations were
more difficult to reconstruct accurately. We were surprised
to find that 20–30% of the phylogenies from closely related
protein families with short ancient branch lengths (ancient
radiation) were estimated inaccurately, despite uniformly
highpairwise sequence similaritywithin the family (fig. 4C, up-
right triangle, Q4, Q5). This result suggests that sequences
found by a Blast search, with very good expectation values,
can frequently fail to produce correct phylogenies simply
because of ancient radiation. Thus, LGT need not be in-
voked to explain inaccurate or inconsistent phylogenies.
Short ancient branches, which can produce LBA, combined
with distant protein homologs, and a high frequency of
gaps, may be the simplest explanation for the inconsistent
phylogenies produced by Giardia protein families.

Including ESTs in phylogenetic tree reconstructions
reduced accuracy only slightly when the EST sequence
covered more than half the length of the protein family.
Likewise, when we estimated trees using true multiple se-
quence alignments, phylogenetic accuracy improved only
slightly. Our results are consistent with work by Hall
(2005), which shows that topological accuracy does not in-
crease when correct alignments are used. However, branch-
length accuracy is increased with accurate alignments (Hall
2005). Although accurate alignments are important for cre-
ating accurate trees, other factors, such as sequence simi-
larity and short ancient branch lengths, have much more
impact on phylogenetic accuracy. In challenging cases such
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FIG. 6.—Tree accuracy with simulated proteins and Giardia protein
families. The cumulative fraction of protein families with TREESCOREs
less than or equal to X values. Ancient radiation families in quintile 2 (AR
Q2,4), ancient radiation families in the least similar quintile (AR Q1,P),
and Giardia protein families (d) are shown. Trees were reconstructed us-
ing maximum likelihood.
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as families with long recent branches, sequence concatena-
tion and choosing trees with high robustness scores (boot-
strap values and posterior probability) can improve the
probability of accurately estimating the trees.

Because simulation studies are performed under well-
specified models, our results almost certainly overestimate
our ability to reconstruct accurate phylogenies from biolog-
ical data. Thus, our estimates of reconstruction accuracy
must be seen as best case values; more complex models
of rate variation across sequences, and a more comprehen-
sive sample of tree topologies and radiation histories, might
allow a more reliable estimate phylogeny accuracy for
a given level of sequence similarity. For similar levels of
sequence similarity, theGiardia families produce much less
accurate trees than our simulated families (fig. 5D). The
large differences in ungapped alignment coverage between
our synthetic families and Giardia families suggest that
a more realistic model for protein families would contain
a domain insertion/deletion model, perhaps with domains
that evolve at different rates from the surrounding sequence.
Because Giardia protein families do show a range of tree
accuracies similar to our Q1 synthetic families, it may be
possible to develop a more accurate synthetic evolution

model that reproduces the multiple alignment ungapped
coverage and has a range of TREESCORE accuracies sim-
ilar to Giardia. This model might allow a more accurate
prediction of phylogeny reconstruction from sequence sim-
ilarity and ungapped alignment coverage.

Of course, some of the inaccurateGiardia phylogenies
may reflect biological phenomena (i.e., LGT or recombina-
tion) and possible human errors, such as including paralo-
gous genes or proteins that do not share similar domain
composition. But the observation that synthetic protein
families with a simple phylogenetic history can produce
a similar range of reconstruction accuracies (fig. 6) suggest
that a computational, rather than biological, explanation is
sufficient to explain the inconsistencies.

Species trees based on molecular data are rarely esti-
mated with individual proteins. Now that many prokaryotic
and model eukaryotic genomes have been completed and
several groups are producing high-throughput EST se-
quences, phylogenetic analysis should be performed not
on individual protein families but by concatenating several
sequences. To improve accuracy further, phylogenies
should be estimated with organisms that have close rela-
tives in the protein family and all sequences should share

FIG. 8.—Strategies for improving phylogenetic accuracy. The effect of gene concatenation (A, B) and using true alignments (C) on phylogenetic
accuracy was examined. Bootstrap analysis was also performed (D). Ancient radiation gene families were grouped as in figure 2B. Filled symbols rep-
resent families with a significant median expectation value; members of these families would be identified by sequence similarity searches. Trees were
reconstructed using maximum likelihood. (A) Box plots summarize the distribution of TREESCOREs. A-I (ancient radiation—individual gene), A-C
(ancient radiation—concatenated genes), U-I (uniform divergence—individual), U-C (uniform divergence—concatenated), R-I (recent radiation—
individual), and R-C (recent radiation—concatenated). As in figure 3, the boundaries of the box indicate the first and third quartile, with the median shown
inside the box. The lines outside the box extend 1.5 times the interquartile distance, and circles indicate outliers beyond that range. (B) Gene families were
concatenated from families of the same topology and evolutionary distance group. Shown is the fraction of families with accurate phylogenies, classified
by a TREESCORE greater than 0.80, from individual genes (solid line) and concatenated genes (dashed line). (C) Ancient radiation phylogenies recon-
structed from the true multiple sequence alignment (dashed line) are compared with reconstructions from T-COFFEE alignments (solid line). (D) Tree
robustnesswasmeasured from average bootstrap values for 100 sample trees of internal nodes (bootstrap score). Familieswith bootstrap scores greater than
median (4 and :) compared with all trees (solid line).
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statistically significant sequence similarity (E(�) � 10�3)
with all other members of the family. And, in studies of
phylogenies with many protein families, families with high-
er bootstrap values across the tree are more likely to pro-
duce accurate phylogenies.
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