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The availability of comprehensive sequence databases, rapid sequence comparison methods, and

accurate statistical estimates for sequence similarity has fundamentally changed the practice of bio-

chemistry and molecular biology. With the possible exceptions ofE. coli andSaccharomyces, the

vast majority of the genes in newly sequenced genomes are characterized by sequence similarity

searching.blast , fasta , and Smith-Waterman similarity searches provide the most informative

and reliable method for inferring the biological function of an anonymous gene (or the protein that it

encodes). Typically, 60–80% of eubacterial (and yeast) genes share statistically significant sequence

similarity with sequences from another organism. Significant sequence similarity can be used to infer

common ancestors and similar three-dimensional structures, and is routinely used to assign functions

in metabolic pathways. Even for the first archaebacterial genome sequenced (M. jannaschii; Bult

et al., 1996), similarity-based functional gene assignments could be made for about 50% of the genes

(Andradeet al., 1997) and subsequent sequence analyses (Koonin, 1997) suggested functions for

another 20% of the genes.

Unfortunately, some investigators are uncomfortable inferring the relationship between two se-

quences from a probability or expectation value; they prefer to think in terms of percent identity

(sometimes mis-stated as percent homology). When current versions of theblast andfasta simi-

larity searching programs are used, this concern is rarely justified. It is very unusual for a statistically

significant sequence similarity not to reflect common ancestry, and thus common structure, for the

two sequences.

This chapter will provide an overview of the role of statistical significance estimates in biological

sequence comparison, focusing on local similarity searches. We will begin by discussing the relation-

ship between “statistical significance” and “biological significance,” addressing the question: “What

biological inferences can be drawn fromstatistically significantsequence similarity?” Next, we will

survey strategies that have been used to estimate the significance of local sequence similarity scores.

Finally, we will discuss the reliability of statistical estimates for local sequence similarity scores.
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Statistical Significance and Biological Significance

Blast , fasta , and other sequence similarity searching programs are designed to identify distantly

related—homologous—sequences based on sequence similarity. When we say that two sequences are

homologous, we are stating our belief that the two sequences diverged from a common ancestor in the

past. A remarkable result of microbial genome sequencing projects has been that a large fraction of

proteins, typically 50–80% of each newly sequenced genome, share statistically significant similarity

with proteins in other organisms that diverged hundreds to thousands of millions of years in the past.

Thus, it is common to observe very strong sequence similarity between prokaryotic and eukaryotic

proteins that diverged more than two billion years ago.

The inference of homology, at least as the term is commonly used in sequence analysis, implies

that the homologous proteins have similar structures. Indeed, structural similarity is the gold standard

for homology. Almost without exception, if two sequences share statistically significant similarity,

they will share significant structural similarity. However, the converse is not true; there are many

examples of similar structures that do not share significant similarity (though perhaps not as many

examples as are presented in the literature).

The concept of homology was given wide exposure and common usage by Richard Owen, the

first curator of the British Museum. Owen defined a homolog as simply “the same organ in different

animals” (Owen, 1843). He further divided homology into two types: special and serial. Special

homology is essentially the definition of homology we use today, “the same organ in different an-

imals.” In contrast, serial homology specifically refers to similarity between structures in different

body segments, such as the legs of a millipede. Darwin’s theory of evolution by natural selection con-

ferred upon homology the specialized meaning of structures or organs that share a common ancestor.

Although he regarded Darwin’s theory as little more than speculation, Owen did admit that special

homology was the result of common ancestry (Owen, 1866).

Implicit in all definitions of anatomical homology is some kind of recognizable similarity, e.g.

similarity of form or ontogeny. The classic example of anatomical homology is the similarity of

forelimbs in the higher vertebrates. Whether adapted for grasping, running, swimming, or flying,
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the same basic skeletal pattern can be readily observed. Although forelimbs are detectably similar in

their adult forms, some homologous structures are only similar in embryonic stages.

Closely related concepts describe biological similarity that is not the result of a common evo-

lutionary ancestry. Originally, Owen definedanalogyas similarity of function, without regard to

structure (Owen, 1843), and that definition was repeated by Neurath, Walsh, and Winter (Neurath

et al., 1967). The current definition of analogy adds the qualification that the similarity is not due to

homology, that is, the similarity is primarily due to chance and is typically superficial (Kent, 1992).

The horns of cows and rhinoceroses, and the limbs of insects and vertebrates are analogous.

Convergenceis often invoked as a possible explanation of biological similarity, particularly when

discussing protein sequence motifs. Properly understood, convergence refers to the process of evo-

lution: two distantly related species developing a similar trait that was not present in their common

ancestor. If convergence is observed over numerous stages of the evolution of two separate groups,

it is termedparallel evolution. Examples of similarity from convergence include the body plans of

sharks, dolphins, and ichthyosaurs. As each organism adapted to existence in the water, they devel-

oped a similar body plan by convergent evolution.

“Molecular” Homology

In the 1950’s and 1960’s, as protein sequences and three-dimensional structures were determined,

researchers began to recognize surprising similarity between protein molecules. Though rigorous

methods of understanding and detecting protein similarity were years away, the term “homology” was

quickly applied to similarities observed among the trypsin-like proteases and the globins, implying

that members of protein families shared their remarkable similarity because of divergence from a

common ancestor.

Just as the termhomologyhas been misused and misunderstood among anatomists, among bio-

chemists the usage of homology as a synonym for similarity has unfortunately remained common.

One often reads of “low homology” or even a quantified “percent homology” in papers reporting new

sequences. Since homology is qualitative (having a common ancestor), it cannot be quantified as
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similarity can. Any two sequences have some measurable similarity, but a statement of homology

implies that the similarity has some special meaning, specifically common ancestry.

Examples of Similarity in Proteins

Modern biochemical studies have revealed numerous examples of homology and analogy. In general,

it is widely accepted that the three-dimensional structures of homologous proteins are more highly

conserved than their sequences. Practically speaking, this means that homologous proteins with very

low sequence similarity can and do have very similar structures. It is also believed thatorthologous

proteins—sequences that differ as a result of speciation events, in contrast toparalogoussequences,

which result from gene duplication—share the same cellular function, and that new biological func-

tions have arisen through the generation of paralogs by gene duplication.

Although mentioned frequently, convergent evolution as an explanation of protein similarity is not

well defined. To avoid confusion, Doolittle (1994) proposed three categories of convergent evolution

in proteins: mechanistic convergence, structural convergence, and functional convergence. The actual

mechanisms that produce convergence are the subjects of ongoing research (Sanderson & Hufford,

1996). Here we will qualify convergence as similarity that arises by some kind of common selection.

We will reserve the term analogy for similarity by chance, when no common selection is apparent.

Mechanistic convergencerefers to similar active sites and residues in otherwise unrelated pro-

teins. The classic example given is the mechanistic similarity between the trypsins and subtilisins.

Although these proteins are entirely structurally dissimilar and thus almost certainly unrelated, they

have geometrically and chemically equivalent catalytic triads. In mechanistic convergence, one can

conclude that the need to accomplish a particular biochemical reaction is the selection producing

the convergence. From principles of chemistry, it is reasonable to conclude that there are a limited

number of enzymatic mechanisms available to accomplish particular reactions; thus, the occurrence

of proteins with similar catalytic sites but distinct evolutionary histories is not surprising.

Structural convergencerefers to structural similarity that is not the result of common ancestry.

The adaptive selection applied to the structure is not the protein’s cellular or biochemical function as
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in mechanistic convergence, but rather the thermodynamic stability of the particular fold. Doolittle

mentions the ubiquitous TIM barrels (named for their well known example, triosephosphate iso-

merase) as examples of structural convergence. The structural similarity in convergent TIM barrels

is typically both topological and geometric; that is, both the ordering of the secondary structural

elements in the peptide chain and the atomic positions in space are similar. A second type of struc-

tural convergence is restricted to geometry only, proteins that have a similar three-dimensional ar-

rangement of secondary structural elements but a different ordering of those elements in the peptide.

Examples of geometric structural convergence include the pleckstrin homology domain (PHd) and

verotoxin (Orengoet al., 1995), and the N-terminalβ-barrels ofE. coli transcription termination fac-

tor rho and the F1 ATPase subunits. In each case, the arrangement of atoms in space is very similar,

but the tracing of the peptide chain through those atoms is different. In the case of the rho/F1 sim-

ilarity, the rho barrel is actually traced in reverse order with respect to the F1 barrel (Allisonet al.,

1998).

A third category of protein convergence defined by Doolittle isfunctional convergence. Multiple

examples of independent origins of the same or similar enzymatic activities are known. For example,

Rawlings and Barrett used a sequence analysis and manual structural evaluation to assign peptidases

to 64 different “clans,” each with an independent evolutionary origin (Rawlings & Barrett, 1993).

Although Doolittle calls this similarity “functional convergence,” no adaptive advantage or selection

pressure is known or given for why so many different kinds of peptidases would exist. Analogy, or

similarity by chance, seems a better description for this type of gross functional similarity.

Inferences from Protein Homology

The inference of protein homology from similarity is routinely used to assign biochemical and cellular

functions of newly sequenced proteins when a protein of known function is available for comparison.

This is of critical importance for initial analysis of genomic sequences. For example, the vast ma-

jority of function assignments of the open reading frames (ORFs) of theMethanococcus jannaschii

genome were made based on protein homologues detected by sequence similarity (Bultet al., 1996).

By properly using computational tools for sequence comparison, inferring homology from sequence
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similarity is the single most powerful tool we have today for understanding the function and origin of

a protein without actually performing biochemical experiments.

Since protein structure is conserved in divergent evolution, identifying homologous proteins of

known structure can give both a general insight into the fold of the protein of interest as well as a

detailed molecular model if the sequence similarity is high enough. Although a remarkable amount

of information about the function of a protein or protein complex can be gained from traditional bio-

chemical and genetic methods, nothing brings these data into such clear focus as an atomic-resolution

protein structure. Unfortunately, solving a protein structure by NMR or crystallographic methods can

be very time-consuming, much more so than determining the sequence. Deriving structural and

mechanistic information from closely related proteins of known structure will remain an attractive

means of understanding most proteins.

Estimating statistical significance for local similarity searches

The inference of homology from statistically significant sequence similarity is an application of Oc-

cam’s razor; given two competing hypotheses: first that a particular sequence ordering arose twice

independently by chance; or second, that the similarity reflects divergence from a common ancestor,

it seems simpler to conclude that a particular structure arose only once in evolutionary history. Thus,

in biological sequence analysis, we infer homology from statistically significant sequence similarity.

The inference depends on two parts, (1) our ability to measure sequence similarity, and (2) accurate

estimates for the statistical significance of the similarity measure to reduce the likelihood that the

similarity could be expected by chance.

Measuring sequence similarity

Sequence comparison algorithms

Effective algorithms for comparing protein and DNA sequences have been available for more than

thirty years, since the publication of a global sequence comparison algorithm by Needleman and

Wunsch (1970).Globalsequence comparison algorithms seek to align every residue in one sequence
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with every residue in a second, in contrast to the more commonly usedlocal sequence alignment

algorithms, which seek only the strongest region of similarity between two sequences. Global align-

ment algorithms are used for aligning families of sequences with similar lengths in preparation for

phylogenetic analysis; global alignment scores can be transformed to the distance measures used

for building evolutionary trees. Global similarity scores are rarely used to infer homology however,

because the distribution of global similarity scores is not well understood and thus it is difficult to

assign a statistical significance to a global similarity score. Moreover, many proteins are made up of

domains that are homologous only over a portion of the protein sequence.

The most widely used programs for searching protein and DNA sequence databases, including

blast , fasta , and implementations of the Smith-Waterman algorithm, measurelocal sequence

similarity. First described by Smith and Waterman (1981), local sequence alignment algorithms seek

to align the most similar regions of two sequences. Local alignment algorithms have two dramatic

advantages over global alignment methods when searching sequence databases for statistically signif-

icant matches: (1) the statistics of local similarity scores are well understood; and (2) local alignments

allow one to identify conserved domains in proteins, which may not extend over the entire sequence.

blast and fasta use heuristic methods that attempt to approximate the optimal local similarity

shared by two sequences.blast is particularly efficient in identifying distantly related sequences

because it spends very little time calculating similarity scores for sequences that are unlikely to share

significant similarity. fasta is considerably slower thanblast , because it calculates an approx-

imate similarity score for every sequence in the database.fasta uses these approximate scores to

estimate the parameters of the extreme-value distribution,λ andK, which describes the expected

distribution of local similarity scores between random sequences.

Similarity scores for sequence comparison

All algorithms that calculate sequence similarity, global or local, optimal or heuristic, seek to max-

imize a measure of similarity. The earliest (and unfortunately most commonly cited even today)

similarity measure was based on percent identical residues (Watson & Kendrew, 1961). Initially, the

low percent identity of the myoglobin and hemoglobin sequences (typically less than 30%) was a
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surprising feature of two proteins with such similar structures. Later, researchers began to develop

means to describe the similarity of different amino acid residues; the first such efforts were based

on the redundancy of the genetic code, e.g. the minimal number of nucleotide substitutions required

to convert one amino acid in the protein sequence to another (Fitch, 1966). In the 1970’s, Margaret

Dayhoff developed the notion of anaccepted point mutationor PAM (Dayhoff et al., 1978). The

PAM concept centered around the natural selection against certain amino acid substitutions (thus

anacceptedpoint mutation) rather than simply the probability of mutations in the underlying DNA

sequence. More recently theBLOSUMseries of matrices, which tabulate the frequency with which

different substitutions occur in conserved blocks of protein sequences, has been shown to be very

effective in identifying distant relationships (Henikoff & Henikoff, 1992).

Dayhoff’s PAM matrices are based on a well defined evolutionary model for protein sequences

(Dayhoff et al., 1978). Given an estimate for the probability that any amino-acid will change to

each of the other amino-acids, or remain the same, after 1% change (1 accepted mutation per 100

residues), one can estimate the probability that any amino-acid will change into each of the others

after 2%,10%, . . . ,40%, . . .200% change by multiplying the transition probability matrix by itself

2,10, . . . ,40,200 times. After incorporating the probabilitypi of seeing a particular residue, the

resulting matrix gives the probabilityqi, j of residuei aligning with residuej after a specified amount

of evolutionary change. These probabilities are converted to log-odds scores by normalizing the

alignment probabilities by the probability of seeing two residues align by chance,pi p j , yielding a

scoring matrixsi, j = log( qi, j

pi p j
).

Fig. 1 shows parts of twoPAMscoring matrices,PAM40, which incorporates transition proba-

bilities between residues in sequences that have had 40 accepted mutations per 100 residues, and

PAM250, which is “targeted” for sequences that have had 250 accepted mutations per 100 residues.1

The PAM40andPAM250matrices differ dramatically in the relative scores of identities and sub-

stitutions; replacements that are considered unlikely atPAM40, e.g. ’R’ to ’ N’ with sN,R = −7 are

1Because different amino acids have different mutation probabilities, and an amino-acid can mu-
tate to a different residue, which can then mutate again back to the original amino-acid, sequences
that have changed by 250% are expected to remain about 20% identical, on average (Dayhoffet al.,
1978).
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Figure 1: Similarity scoring matrices

A. PAM40

A R N D E I L
A 8
R -9 12
N -4 -7 11
D -4 -13 3 11
E -3 -11 -2 4 11
I -6 -7 -7 -10 -7 12
L -8 -11 -9 -16 -12 -1 10

B. PAM250

A R N D E I L
A 2
R -2 6
N 0 0 2
D 0 -1 2 4
E 0 -1 1 3 4
I -1 -2 -2 -2 -2 5
L -2 -3 -3 -4 -3 2 6

The PAM40and PAM250 similarity scoring matrices are shown for 6 amino-acid residues. The
substitution matrices are symmetric. Diagonal elements are the scores given to amino-acid identities;
off-diagonal elements are the scores used for amino-acid substitutions. Both thePAM40andPAM250
matrices are scaled to 0.33 bits per unit raw score. Thus, if log2

qi, j

pi p j
= 2, the entry in the matrix would

be 6.

considered neutralsN,R = 0 at PAM250. Likewise, replacements that are expected less frequently

than chance (sI ,L = −1) after 40% change are more likely than chance substitutions (sI ,L = 2) after

250% change. Although the DayhoffPAMmatrices are based on the relatively small number of tran-

sitions available in 1978, a modern equivalent is available (Joneset al., 1992), which performs well

when appropriate gap penalties are used (Pearson, 1995).

An alternative strategy for calculating scoring matrices was developed by Henikoff and Henikoff

(1992). Rather than extrapolate transition probabilities for a very large amount of change from the

frequencies obtained after a very small amount of change, they sought to measure transition probabil-

ities directly, by building a very large set of conserved blocks of aligned amino acid residues and then

tabulating the amino acid substitution frequencies by examining columns in the aligned blocks with

different degrees of identity (Henikoff & Henikoff, 1992). These calculations were used to generate

theBLOSUMseries of scoring matrices;BLOSUM50, the default scoring matrix used by thefasta

family of sequence comparison programs, reports substitution frequencies for residues in conserved

blocks of sequences that show 50% identity or less;BLOSUM62, which is the default for theblast

programs, is derived from blocks that are≤ 62% identical, andBLOSUM80reflects a very high de-

gree of sequence conservation by including sequences up to 80% identical. TheBLOSUMmatrices
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are now more widely used than either the original or modern versions of thePAMmatrices because

they appear to perform better with many alignment algorithms (Henikoff & Henikoff, 1992) and over

a broad range of gap penalties (Pearson, 1995).

Both thePAMandBLOSUMseries of matrices provide similarity scores that are targeted for dif-

ferent levels of sequence identity (Altschul, 1991; Henikoff & Henikoff, 1992);PAMmatrices range

from low valuesPAM10–PAM40for high identity toPAM200–PAM250for low (25%–20% identity).

BLOSUMmatrices range from high (BLOSUM80) values for high identity to low valuesBLOSUM50–

45 for distant relationships. However, despite this apparent similarity, the meaning of a “shallow”

PAM20matrix is quite different from that of very conservativeBLOSUM80substitution values. The

PAM20provides scores for sequences that have changed by only 20%; the amount expected for a

comparison of mouse and human proteins, for example. In contrast,BLOSUM80is targeted towards

the most highly conserved regions in proteins, blocks that remain up to 80% identical within two se-

quences that may share less than 30% identity overall. Thus, lowPAMmatrices, but notBLOSUM80,

are appropriate for short divergence times.

Although thePAMandBLOSUMmatrices were built to target specific models of evolution and

conservation, Altschul has shown (Altschul, 1991; Stateset al., 1991) that any scoring matrix can

be written in the formsi, j = log( qi, j

pi p j
) reflecting an implied target substitution frequency, which can

be calculated using the formulaλsi, j = log( qi, j

pi p j
). In particular, theblastn2.0 program for DNA

substitutions, which uses+1 for a match and−3 for a mismatch, hasλ = 1.374. Rearranging the

equation above, the target frequency for any nucleotide match, assumingpA,C,G,T = 0.25, isqA,A =

qC,C = qG,G = qT,T = pApAeλ(+1) = 0.2469 and the overall target identity is∑b=A,C,G,T pb,b = 0.988.

Thus, theblastn2.0 is optimally efficient at identifying homologous sequences that are 98.8%

identical, and considerably less efficient at identifying sequences that share 80% identity or less.

In contrast, the DNA match/mismatch values forblast1.4 and fasta are+5/−4, which, with

λ = 0.1915, are targeted for alignments averaging 65% identity.
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Statistical Significance of Local Similarity Scores

A major breakthrough in biological sequence comparison occurred in 1990, when Karlin and Altschul

published their statistical analysis of local sequence similarity scores without gaps (Karlin & Altschul,

1990), and theblast program incorporated those statistics (Altschulet al., 1990). Although a

method for evaluating the statistical significance of sequence similarity scores, therdf program, was

included with thefastp program (Lipman & Pearson, 1985), along with the advice that sequence

similarity scores that were 6 standard deviations above the mean of the distribution of shuffled se-

quence scores (z> 6) were “probably” significant, there was no statistical basis for this observation.

Work from Waterman and Arratia (Arratiaet al., 1986) and Karlin and Altschul (Karlin & Altschul,

1990) demonstrated that local similarity scores, at least for alignments without gaps, were accurately

described by the extreme-value distribution, which can be written as:

p(S≥ x) = 1−exp(−Kmn e−λx) (1)

whereλ andK can be calculated from the similarity scoring matrixsi, j and the amino acid composi-

tions of the aligned sequencespi , p j , andm andn are the lengths of the two sequences.

Accurate similarity statistics allow us to discriminate reliably between statistically significant

similarities, which reflecthomology, and similarities that could have arisen by chance,analogous

sequences. The availability of “Karlin-Altschul” statistics in theblast program (Altschulet al.,

1990) separated “first-generation” score-only programs from “second generation” methods. Without

accurate statistics, it is impossible to do large scale sequence interpretation.

Statistics of Alignments Without Gaps

The first statistical models for local and global alignment scores applied to runs of similar amino

acid or nucleotide residues, which are equivalent to alignments without gaps. Arratia, Gordan, and

Waterman (Arratiaet al., 1986; Arratiaet al., 1990) and Karlin and Altschul (Karlin & Altschul,

1990; Karlinet al., 1991) demonstrated that local similarity scores are expected to follow the extreme-

value distribution. Waterman presents an intuitive argument in (Waterman, 1995), where, referring to

Erdös and Renýı, he points out that the expected number of runs of heads of lengthl in n coin tosses is
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Figure 2: Sequence comparison as coin tosses
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(A) Results from tossing a coin 14 times; black circles indicate heads. The probability of 5 heads in a
row is p(5) = 1

25 = 1
32, but since there were 10 places that one could have obtained 5 heads in a row, the

expected number of times that 5 heads occurs by chance isE(5H) = 10× 1
32 = 0.31. (B) Comparison

of two protein sequences, with identities indicated as black circles. Assuming the residues were
drawn from a population of 20, each with the same probability, the probability of an identical match
is p = 0.05. In this example, there arem= 10×n = 8 boxes, soE() = mnp= 80×0.05= 4 matches
are expected by chance. The probability of two successive matches isp2 = 1

202 so a run of two
matches is expected aboutnmp2 = 8×10× 1

202 = 0.2 times by chance.

E(l)∼= npl , wherep is the probability of heads (Fig. 2). This relationship follows from the logic that

the expected number of heads is the product of the probability of heads at each toss, times the number

of tosses. If the longest runRl is expected once, 1= npRl and thusRl = log1/p(n). The longest run

of heads coin toss example is equivalent to finding the highest scoring region (e.g. a hydrophobic

patch) in a single protein sequence using a scoring matrix that assigns a positive value to some of the

residues, and−∞ to all of the others. The probability of a positive score, which corresponds to the

probability of heads in the coin-toss example, is∑ pi for each of the residuespi that obtain a positive

scoresi .

The simple example of head-runs, or scores with−∞ mismatch penalties, shows thatlocal simi-

larity scores for single sequences are expected to increase with the logarithm of the sequence length
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n. In sequence comparison, we consider possible alignments of two sequences,a1..m andb1..n, but

the probability calculation is quite similar. Rather than calculate the probability of obtaining thek

heads, wherepk = ppk−1, we consider the case of matching atm positions, or equivalently giving a

headscore ifai = b j . If the sequences are placed as in Fig. 2B, the head-run problem corresponds to

the longest run of matches along any of the diagonals. If the letters (residues) in the two sequences

have equal probabilitiesp, then the probability of a match of residueai with b j is p and the prob-

ability of a match of lengthl from ai ,b j to ai+l−1,b j+l−1 is againpl . In this case, however, there

arem− l + 1×n− l + 1 places where that match could start, soE(l) ∼= mnpl . Thus, the expected

length of the longest match between two random sequences of lengthm andn when the match score

is positive and the mismatch score is−∞ is Mmn= log1/p(mn) or 2 log1/p(n) whenm= n (Waterman,

1995). The shift from log1/p(n) for one sequence to log1/p(n2) for two sequences of lengthn, reflects

the larger number of positions where a run of lengthMl with probabilityP(Ml ) = pMl could start. As

in the single sequence case, we can transform the problem from the probability of the longest match

run to the probability of scoreSl ≥ x by considering the probabilityP(S≥ x) when a pair of residues

aib j is matched with positive scoresi, j and all negative scores are−∞. For local pair-wise alignment

scores with a mismatch score of−∞ and no gaps, the expected number of runs of scoreS≥ x has the

general form:E(S≥ x) ∝ mnpx, or equivalentlyE(S≥ x) ∝ mn exln p or mne−λx whereλ =− ln p.

Karlin and Altschul provided a natural extension of the problem of head-runs, or match-runs, or

positive similarity scores bounded by−∞ mismatch scores, to the more general case of local sequence

patches or local similarity scores for non-intersecting alignments without gaps. To ensure the scores

are local, the requirement thatE(si, j) = ∑i, j pi p jsi, j < 0 must first be met. If so, the expected number

of alignments with scoreS is:

E(S≥ x) = Kmn e−λx (2)

Karlin and Altschul derived analytical expressions forK andλ (Karlin & Altschul, 1990).K < 1 is

a proportionality constant that corrects themn“space factor” for the fact that there are not reallymn

independent places that could have produced scoreS≥ x. Compared toλ, K has a modest effect on

the statistical significance of a similarity score.

The λ parameter provides the scale factor by which a score must be multiplied to determine its
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Figure 3: The extreme value distribution
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The extreme value distribution. The observed distribution (squares) of similarity scores from a com-
parison of the human glucose transporter sequencegtr1 human against each of the∼ 84,000 se-
quences in Swiss-Prot, and the expected (solid line) distribution of scores, based on the extreme value
distribution, is shown. Similarity scores were calculated with the Smith-Waterman algorithm, with
theBLOSUM62scoring matrix and a penalty of−12 for the first residue in a gap and−1 for each ad-
ditional residue. The y-axis shows the number of Swiss-Prot sequences obtaining the score shown on
the x-axis. Three different scales for the similarity scores are shown:z(σ) shows the scores in terms
of standard deviations (σ) above the mean (equation 6);λS shows the scale in terms ofλS− log(Kmn)
(equation 1);bit shows thebit score (equation 4).
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probability. For ungapped alignments,λ is the unique positive solution to the equation:

∑
i, j

pi p j eλsi, j = 1 (3)

λ thus depends both on the scoring matrix (esi, j ) and the residue compositions of the two sequences

(pi p j ). In some sense,λ can be interpreted as a factor that converts pair-wise match scores to prob-

abilities, so thate−λx is similar to pl in the coin tossing example. Thus, just as in the coin-tossing

case, the expectation of a run of heads (or an alignment run that produces scoreS) is the product of a

space-factor term,Kmn, and a probability terme−λS.

The need for a scale factor to convert raw similarity scores into probabilities follows intuitively

from the observation that multiplying or dividing every value in a similarity scoring matrix by a

constant has no effect on the local alignments that would be produced by that matrix, or on the

relative distribution of similarity scores in a library search—the highest scoring sequence will still

be the highest, second highest second, etc. Thus it is impossible, without some previous knowledge

of the scoring matrix used and the particular scaling of the scoring matrix, to evaluate the statistical

significance of a raw similarity score. However, by using a scaled similarity scoreλSraw, one can

readily compare alignments done with any scoring matrix.blast2.0 (Altschul et al., 1997) and

the currentfasta3 comparison program (Pearson, 1999) report the scaled score in terms of abit-

score that incorporates the space correction factorK: Sbit = (λSraw− lnK)/ ln2. Thus, substituting in

equation 2:

E(Sbit) = mn2−Sbit =
mn
2Sbit

(4)

Equations 2 and 4 describe the number of times a score≥ Sbit would be expected by chance

when two random sequences are compared.2 This expectation can range from a very small value

for very high scores (e.g.Sbit = 1000), to a value that approachesmnwhenS= 0. In a comparison

of two average length protein sequencesn = m= 400,Sbit = 10 would be expectedE(Sbit ≥ 10) =

mn2−Sbit = 156 times. To estimate the probabilityP(Sbit ≥ 10), which must range from 0 to 1, of

obtaining at least one scoreS≥ x, we use the Poisson approximation.
2More accurately, the statistical model assumes that the two sequences are made up of residues

that are independent and identically distributed,i.i.d.. The identical distribution assumption can be vi-
olated by low complexity regions in proteins and DNA or by strongly biased amino-acid or nucleotide
composition.
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The Poisson formula describes the probability of an event occuring a specified number of times,

based on the average number of timesµ it is expected to occur.3 The Poisson probability of seeing

n events when an event is expectedµ times on average is:P(n) = e−µ µn/n!. In general, we are

interested in the probability of seeing the event≥ n times, and in the case of sequence comparisons,

we ask for the probability of seeing a high score one or more times (n≥ 1). In this case, one can

calculate the probability of not seeing the event zero times:P(n≥ 1) = 1−P(0), so P(S≥ x) =

1−P(n = 0) = 1−e−µµ0/0!. Sinceµ = E(S≥ x) = Kmne−λx andµ0 = 0! = 1 the probability of

seeing a raw similarity scoreS≥ x is:

P(S≥ x) = 1−exp(−µ) = 1−exp(−Kmn e−λx)

as seen earlier in equation 1.

Equation 1 describes the probability of obtaining a similarity scoreS≥ x in a single pairwise

comparison of a query sequence of lengthmagainst a library sequence of lengthn. This equation has

the same form as the extreme-value distribution or Gumbel distribution, which is often presented as:

P(S≥ x) = 1−exp(−e−(x−a)/b) (5)

with a providing the “location” of the mode, andb determining the scale, or width, of the distribution.

For local similarity scores without gaps,b = 1/λ anda = lnKmn/λ. The mean of the extreme-value

distribution isa− bΓ′(1), whereΓ′(1) = −0.577216 is the first derivative of the gamma function

Γ(n = 1) with respect ton. The variance isb2π2/6 (Evanset al., 1993). Thus, one can express the

probability that an alignment obtains a scorezstandard deviations above the mean of the distribution

of unrelated (or random) sequence scores as:

P(Z≥ z) = 1−exp(−e−( π√
6

z−Γ′(1))) (6)

These equations describe the probability that two sequences would obtain a similarity score by

chance in a single comparison. However, in a sequence database search, the highest scoring align-

ments are identified after a query sequence has been compared with each of the 10–100’s of thousands
3λ is generally used to denote the characteristic parameter of a Poisson distribution, but we useµ

here to avoid confusion with theλ scaling factor and to reinforce the fact thatµ is the mean of the
Poisson distribution.
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of sequences in the database. Thus, in the context of a database search afterD = 100,000–500,000 or

more alignments have been scored, the number of times a score is expected to occur, theexpectation

value, is considerably higher:

E(S≥ x) = DP(S≥ x) (7)

Thus, in 1985, with protein sequence databases containing fewer than 3,000 sequences, Thus, a

similarity score 6 standard deviations above the mean (z = 6) has a probabilityP(Z ≥ 6) < 2.6×

10−4 in a single pairwise comparison. However, in 1985, with 3,000 entries in the protein sequence

database,E(Z≥ 6) = 3,000×2.6×10−4 = 0.77. Thus, a score 6 standard deviations above the mean

should be seen by chance very frequently, and the advice provided with the description of thefastp

program overestimated statistical significance. Today, with protein sequence databases ranging in

size from 100,000–500,000 sequences, az = 6 score would be expected 25 times by chance when

searching a 100,000 sequence database (equations 6 and 7), andz≥ 12.1 is required to achieve

statistical significance ofE(100,000)≤ 0.01. (ForE(500,000)≤ 0.01,z≥ 13.4.)

Alignments with Gaps

The statistical analysis of local similarity scores summarized in the previous section was derived for

alignments without gaps. Although searches that report only the best local alignment without gaps

can perform very well, they do not perform as well as a Smith-Waterman search with modern scoring

matrices and appropriate gap penalties (Pearson, 1995). Thus, there is considerable interest in the

statistical parameters that describe the distribution of local similarity scores with gaps.

The first implementation of the Smith-Waterman (Smith & Waterman, 1981) algorithm that pro-

vided statistical estimates for similarity scores was developed by Collinset al. (1992). Although

they did not use the extreme-value distribution, they recognized that the number of sequencesSx

obtaining a score ofx≥ x̄, where ¯x is the mean similarity score, decreases exponentially. A line

fit to log(Sx), the declining number of scores excluding the top 3%, can be used to extrapolate the

expectation of obtaining a high-score. This strategy works reasonably well because the number of

sequences that obtain a score predicted from the probability density function of the extreme-value

distribution (Fig. 3) has the form:PDF(S= x) = λKmne−λxe−Kmne−λx
The second exponential term
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does not contribute significantly to thePDF whenx> x̄, so for high scores, the regression becomes:

log(PDF(S= x)) = log(λKmn)−λx. Collins et al. recognized that the highest expected score by

chance increased with the length of the query sequence (Collinset al., 1988) but they did not incor-

porate a length correction into their expectation calculation. The lack of a lognl library sequence

length correction significantly reduces the sensitivity of the search, as long unrelated sequences can

have higher scores, by chance, than shorter related sequences (Pearson, 1995; Pearson, 1998).

Mott (1992) provided the first empirical evidence that the distribution of optimal local similarity

scores with gaps could be well approximated by an extreme-value distribution. He considered the

an equation of the form:F(y,m,n,c) = exp(−e−(y−A)/B) whereA = a0 +ca1 +ca2 log(mn), B = cb1

andc = 1/λungapped, defined as in equation 3. In this case, ac = 1/λ parameter was calculated for

sets of sequence pairs with identical compositions. In addition to correcting for the scaling of thesi, j

scoring matrix,c = 1/λ reflects the amino-acid composition of the two sequences being compared.

Unfortunately, estimatingλ or c using equation 3 is time-consuming. This approach may improve

searches when query sequences have a biased amino-acid composition, but it is not generally available

in sequence comparison programs.

The most widely used estimates forλ andK for searches with gapped alignments are those pro-

vided for in theblast2 and psi-blast comparison programs (Altschulet al., 1997). These

values are based on maximum-likelihood estimates ofλ, K, andH from simulations of random pro-

tein sequences of average composition (Altschul & Gish, 1996).H describes the relative entropy,

or information content, of a scoring matrix and can be thought of as the average score per aligned

residue (Altschul & Gish, 1996). In this case, the parameters of the extreme-value distribution are

slightly different:

P(S≥ x) = 1−exp(−Km′n′e−λx) (8)

where form,n, the query and library sequence lengths,m′= m− log(Kmn)/H andn′= n− log(Kmn)/H.

By correctingm and n for the expected length of an alignment between two random sequences

log(Kmn)/H, the search space termKm′n′ is estimated more accurately (Altschul & Gish, 1996).

The fasta package of programs estimates the extreme-value parameters from the distribution

of similarity scores calculated during the search (Pearson, 1996; Pearson, 1998). This approach is
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Figure 4: Empirical estimation of extreme-value parameters
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Sequence similarity scores plotted as a function of library sequence length. All the similarity scores
calculated in the comparison ofgtr1 human with an annotated subset of SwissProt (∼ 24,000 se-
quences) are summarized. Scores from unrelated sequences are shown as averages (squares) with
standard errors indicated; each score from a related sequence is plotted (diamonds). The unrelated
sequence scores are plotted linearly against the left ordinate, the related scores are plotted on a loga-
rithmic scale on the right ordinate.

efficient when scores are available for every sequence in the database, as is the case for afasta

or Smith-Waterman search; no additional similarity scores must be calculated and the statistical pa-

rameters reflect the true distribution of similarity scores produced with the specific query sequence

and the specific sequence database. However, a method that estimates statistical parameters from the

actual distribution of similarity scores must avoid including scores from “related” sequences in the

estimation sample. This is straightforward in the typical case where a query sequence is compared to

50,000–500,000 sequences in a comprehensive database and fewer than 1,000 sequences could be

related in the worst case. However, these empirical statistical estimates cannot be used when a search

is done against a special purpose database that may contain only sequences from a single protein

family. For this case, thefasta programs provide an option to calculate a similarity score from a

shuffled version of each sequence in the database; the distribution of these shuffled scores are then

used for parameter estimation (Pearson, 1999).
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By default, thefasta programs estimate the location and scale parameters of the extreme-value

distribution by fitting a line to the relationship between similarity score and log(nl ), the library se-

quence length, by calculating the mean and variance of similarity scores in bins of length log(nl ) of

the library sequence (sequences in each bin differ in length by∼ 10%, Fig. 4). This line provides the

location parameter, related to log(Knl )/λ, and the residual variance (̂σ2) of the log(nl )-normalized

similarity scores can be used to calculateλ = π/
√

6σ̂2. Binning similarity scores by log(nl ) pro-

vides a simple strategy for excluding related (high-scoring) sequences from the estimation process.

log(nl ) length bins are initially weighted by the inverse variance of their similarity scores; length

bins with very high scores have a high variance. After the initial log(nl ) regression is performed,

bins that continue to have very high score variance are excluded and the number of bins and scores

excluded is reported. Typically, this process excludes 0–2 of 50 length bins with about 5% of the

library sequences. Once the log(nl ) regression line and̂σ2, the average residual variance, have been

determined, the probability of a single pair-wise similarity score can be calculated using equation 6.

Alternatively, fasta provides an option to estimateλ andK using maximum-likelihood, using

equation 1. This estimation is similar to that of Mott (1992), but omits the “composition” datac

and estimates theλ parameter directly. To avoid the scores from related sequences, the likelihood

model implements a censored estimation strategy that excludes the lowest and highest 2.5% of the

scores. This approach has the advantage that bothK andλ are estimated directly and that there is

no assumption that related sequences have well defined lengths. (Families that are globally similar,

e.g. globins and cytochome ‘c’s, have characteristic lengths, but homologous domains, e.g. the EF-

hand calcium binding domain, zinc-fingers, or protein kinase domains may be in proteins with very

different lengths).

The major difference between thefasta programs and theblast programs (aside from speed)

is the strategy used for estimating statistical significance of similarity scores. Whileblast pre-

calculatesλ andK from randomly shuffled sequences,fasta calculates the extreme value parame-

ters from the actual distribution of similarity scores obtained in a search. Thus,fasta must calculate

at least an approximate similarity score for every sequence in a database.blast is fast because it

calculates scores only for sequences that are likely to be homologous. While this strategy works
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well for protein sequences, it is more problematic for translated-DNA:protein comparisons, where

the appropriate statistical model is more difficult to specify.

Pairwise Statistical Significance

The strategies outlined above can be used to estimate the statistical significance of a high similarity

score obtained during a database search. If theblast2.0 (Altschul et al., 1997)λ andK parame-

ters are used as calculated in (Altschul & Gish, 1996), the statistical significance measurement reports

the likelihood that a similarity score as good or better would be obtained by two random sequences

with “average” amino-acid composition, and lengths similar to the lengths of the sequences that pro-

duced the score. However, if either of the two sequences have amino acid compositions significantly

different from “average,” the statistical significance may be an over or underestimate.

The empirical statistical estimates provided by programs in thefasta package (Pearson, 1996;

Pearson, 1998) report a slightly different value; the expectation that a sequence with the length and

composition of the query sequence would obtain a similarity score against an unrelated sequence

drawn at random from the sequence database that was searched. Again, if the query sequence has a

slightly biased amino acid composition, e.g. because it is a membrane-spanning protein with several

hydrophobic regions, then while the significance of the similarity with respect to “average” composi-

tion proteins is accurate, the more biologically important question, the significance of the similarity

when compared to unrelated membrane-spanning proteins, may be an overestimate. To address this

problem one could use Mott’s strategy to include thec = 1/λungappedcomposition/scaling parameter

in the maximum-likelihood fit, withc calculated using equation 3 for every pairwise comparison in

the database. Although the composition calculation can be time consuming, this option is available

in thefasta3 package.

The significance of a specific pairwise similarity score, in the context of the residue distributions

in each of the two sequences, the query and library sequence, can also be estimated using a Monte-

Carlo approach. The two sequences are compared, and then one or both of the sequences is shuffled

hundreds of times to generate a sample of random sequences with the same length and residue com-

position. Similarity scores are calculated for alignments between the query sequence and each of
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Table 1: Statistical Significance Estimates

qutd emeni cit1 ecoli kgtp ecoli yb8g yeast λ
gtr1 human: moderate distant very weak unrelated

blastp2.0 2.0e-25 1e-05 0.077 2.0 0.2700
ssearch BL50 1.6e-28 6.1e-05 0.014 0.72 0.1544

raw-score 536 199 148 123
bit-score 127 48 40 35

% identity 27.1 22.1 24.1 22.1
ssearch BL62 4.7e-32 1.2e-4 1.3 3.1 0.2584

raw-score 356 120 75 72
bit-score 138 47 34 33

% identity 26.9 21.0 27.9 24.1
ssearch BL62 ∗ 2.8e-30 3.2e-4 2.3 5.2 0.2459

bit-score 356 46 33 32

prss BL50 7.2e-25 6.5e-03 0.0039 92.
λ 0.1375 0.1237 0.1317 0.1263

window 20 3.9e-09 0.097 0.21 361.
λ 0.0653 0.1064 0.1206 0.1110

BL62 6.6e-30 8.5e-4 0.36 49.
λ 0.2405 0.2282 0.2343 0.2265

window 20 2.0e-25 9.8e-03 0.72 92.
λ 0.2108 0.2011 0.2256 0.2172

Expectation values are shown for similarity scores between human glucose transporter type 1
(gtr1 human) and three members of the glucose transporter family quinate permease
(qutd emeni ); maltose permease (cit1 ecoli ); α-ketoglutarate permease (kgtp ecoli ) and
a probable non-member a hypothetical yeast protein (yb8g yeast ). Theblastp2.0 search was
done with the default scoring matrix and gap penalties,BLOSUM62, −12 for the first residue in a
gap (−11 gap-open), and -1 for each additional residue (gap-extend).ssearch (Smith-Waterman,
Smith & Waterman, 1981,Pearson, 1996 searches used either the default matrix (BLOSUM50, BL50)
and gap penalties (−12/−2) or the same scoring matrix and gap penalties as theblastp2.0 search
(BL62). ssearch statistical estimates were calculated using the default linear-regression method
(BL50, BL62) or the maximum likelihood method (BL62∗). Both blastp2.0 and ssearch
searches examined alignments between sequences with low-complexity regions removed by theseg
program (Wootton, 1994). Expectation values are reported in the context of a search of Swiss-Prot
(Bairoch & Apweiler, 1996) database (∼ 84,000 entries). Theλ scaling/composition-factor for each
search is shown in the right column.

Statistical significance was also estimated by with a Monte-Carlo approach (prss ) in which the
second sequence was shuffled 1000 times using either a uniform or “window” (-w 20 ) shuffle.
Expectations reported byprss have been multiplied by 84 to reflect the expectation from a search
of the 84,000 entry Swiss-Prot database.
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the shuffled sequences.λ andK parameters can then be calculated from this distribution of scores

using maximum likelihood, as is done by theprss program in thefasta package (Pearson, 1996).

The fasta programs offer two shuffling options: (a) auniform shuffle, in which each residue is

randomly repositioned anywhere in the sequence; and (b) awindowshuffle, in which the sequence is

broken inton/w windows (n is the length of the sequence andw is the length of the window, typically

10–20 residues) and the sequence in each window is randomly shuffled. For “average” composi-

tion query sequences, both uniform and window-shuffle estimates should be similar to those obtained

from a database search. However, for scores of alignments between sequences of biased composition,

significance estimates derived from the similarity scores of uniformly shuffled sequences should be

more conservative than estimates based on the distribution of unrelated sequences from a compre-

hensive sequence database (Table 1). Window-shuffle estimates should be even more conservative,

particularly if the similarity reflects a local patch of biased amino acid composition that would be

homogenized by the uniform shuffling strategy.

Shuffling strategies rely on the assumption that the similarity scores of real unrelated protein

sequences behave like the similarity scores of randomly generated sequences. While this is almost

always true, some query sequences may have properties that are present in unrelated sequences but

not in shuffled sequences. An alternative strategy for estimatingλ andK from a comparison of two

sequences has been proposed by Waterman and Vingron (1994),4 based on a strategy they refer to

as “Poisson de-clumping”. They note that not only are the highest scoring similarity scores from

a sequence similarity search extreme-value distributed, but the highestH(1), second highestH(2),

H(3), . . . ,H(n) alignment scores from a single pairwise comparison can be used to estimateλ and

K, as long as the alignments do not overlap or intersect. An algorithm for calculating then-best

non-intersecting local alignments between two sequences was described by Waterman and Eggert

(Waterman & Eggert, 1987), a space-efficient version is available as thesim algorithm (Huanget al.,

1990). This approach has the advantage that it does not require the use of shuffled sequences, which

may have different statistical properties than “natural” protein sequences in some cases, and it calcu-

latesλ andK for the pair of sequences, with their specific lengths and residue compositions, rather

4p andγ in (Waterman & Vingron, 1994) correspond toe−λ andK, respectively in equation 1.
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than for an average distribution of library sequences. However, the approach also assumes that for

somei, one can assume thatH(i) reflects the score of an alignment that occurs by chance, rather than

because of homology. This is true for single domain proteins that do not contain internal repeats, but

it is not true for proteins containing internal duplications. For example, a comparison of calmodulin

with troponin ’C’ would produceH(1), . . . ,H(4) which reflect the homology of the four EF-hand cal-

cium binding domains in each sequence, andH(5), . . . ,H(n), which could be used to estimateλ and

K. A protein with a dozen copies of a duplicated domain would have more than 100 local alignments

with scores that reflect homology.

Accuracy of λ and K

Reliable statistical estimates for similarity scores can dramatically improve the sensitivity of a sim-

ilarity search, because they provide an accurate quantitative model for the behavior of scores from

unrelated sequences. Thus, it is far more informative to state that a pair of distantly related sequences

has a similarity score that is expected by chance only once in 10,000 database searches (E()< 10−4)

than it is to state that two sequences share 30% identity. Unfortunately, percent-identity remains the

most commonly published measure of sequence similarity, despite the fact that identity measures

are far less effective than similarity scores that reflect conservative replacements (Schwartz & Day-

hoff, 1978; Pearson, 1995; Levitt & Gerstein, 1998). High levels of identity are frequently seen

between unrelated sequences over short regions (Kabsch & Sander, 1984) and sequence alignments

with less than 25% identity may either be clearly statistically significant (Table 1,gtr1 human ver-

suscit1 ecoli , BL62, E()< 10−9 ) or not significant (gtr1 human vs. yb8g yeast , BL62,

E()< 0.25).

Before accurate statistical estimates for local similarity scores were available, it was routine to

consider the tradeoffs between a search strategy’s “sensitivity,” the ability to identify distantly re-

lated sequences (to avoid false-negatives), and its “selectivity,” not assigning high scores to unrelated

sequences (false-positives). With an accurate model for the distribution of similarity scores from un-

related sequences, the threshold for statistical significance (typically 0.02–0.001) sets the selectivity

or false-positive rate; a thresholdE() < 0.001 predicts a false positive every 1000 searches. Thus, a

24



significance threshold ofE()< 0.001 is expected to produce several false positives when characteriz-

ing all the proteins inE. coli or yeast ( 4,000 and 6,000 proteins), and 18 false positives are expected

with E() < 0.001 when each of the 18,000 proteins inC. elegansis compared to the SwissProt

database. However, the conservative strategy of reducing the significance threshold to 0.001/4,000

for E. coli, or 0.001/18,000 forC. elegans, ensures that many homologous proteins will be missed

(false negatives).

Of theλ andK parameters for the extreme value distribution, the scale parameterλ has the largest

effect on the statistical significance estimate. In searches using the BLOSUM62 scoring matrix and

gap penalties of−12/−2 of a subset of the Swiss-Prot with 50 unrelated protein sequences with

lengths ranging from 98–2,252 (mean 432±57), maximum likelihood estimates ofλ ranged from

0.204–0.304 (mean 0.275) whileK ranged from 0.0039–0.062 (mean 0.012). K andλ are strongly

correlated; low values ofK are found with low values ofλ. Around the average values, however,

reducingK by a factor of 2 reduces theE() value only 2-fold, (1-bit), but a similar change in statistical

significance would occur by reducingλ from 0.275 to 0.268, or about 2.5%. Reducingλ by 20%,

which is well within the range ofλ’s seen after shuffling withprss in Table 1, would reduce the

statistical significance of a raw score of 100 250-fold, or 8-bits.

Table 1 illustrates the importance ofλ on significance estimates for three related and one unre-

lated sequence. The differences in expectation values reflect differences in estimates forλ andK;

for a given scoring matrix (BLOSUM50or BLOSUM62) the raw similarity scores for each pair-wise

comparison (e.g.gtr1 human:cit1 ecoli ) do not change. The significant differences between

theλ values forBLOSUM50andBLOSUM62reflect the different scaling of the two matrices.BLO-

SUM50is scaled at 0.33 bits per unit raw score, so that a raw score of 148 produces a bit score of

∼ 148/3 (the actual value for these gap penalties is 0.27 bits/raw-score).BLOSUM62is scaled at 0.5

bits/raw-score, with a raw score of 75 giving a bit score of 34.5

Two trends are apparent: (1)λ estimates fromprss shuffled comparisons tend to be smaller than

λ estimates from database searches, and (2)λ estimates for local (window) shuffles are somewhat

5Because of this different scaling, a gap penalty of−12/−2 for BLOSUM50, the default with
ssearch , is equivalent to a gap penalty of−8/−1 for BLOSUM62.
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lower, reducing the significance even further. These decreases inλ are expected because the query

and library sequences used in this example have a somewhat biased amino-acid composition; the

proteins have multiple transmembrane domains with a bias towards hydrophobic amino-acid residues

(Kyte & Doolittle, 1982). Thus, theλ’s from ssearch are lower than theblast2.0 λ, because the

simulations used to assignλ in blast2.0 assume an “average” amino-acid composition for both the

query and library sequence; the empiricalssearch estimates correct for the composition bias of the

query sequence, but still reflect the “average” composition of the library sequences.λ’s determined

by prss shuffling are lower still, becauseprss estimates account for the composition bias in both

the query and library sequences. Window shuffling inprss reducesλ even further, presumably

because the highest scoring regions in each pairwise comparison are restricted to sequence patches

with the most biased composition. However, despite these differences inλ’s, the ssearch and

prss uniform-shuffle significance estimates for the intermediate and distantly related sequence pairs

usually agree within a factor of four. Window-shuffled estimates reduce statistical significance much

more dramatically, about 2–4 orders of magnitude for moderately and weakly significant similarities.

The statistical estimates provided by theblast2.0 andfasta sequence comparison programs

are generally robust and reliable. To illustrate the factors affecting significance estimates, we have

emphasized the modest differences inλ andE() in Table 1. However, Table 1 illustrates even for

sequences with biased amino-acid composition that share 20–25% sequence identity, the significance

estimates reported by eitherblast2.0 or programs in thefasta package are very similar, and

consistent with statistical estimates produced by uniform shuffling. Window-based shuffling produces

a much more conservative statistical estimate.

Evaluating statistical estimates

The inference of homology (common ancestry) from statistically significant similarity rests on two

assertions: (1) that similarity scores, calculated with optimal (Smith-Waterman) or heuristic (blast

or fasta ) algorithms using common scoring matrices (PAM250, BLOSUM62) and gap penalties

follow the extreme value distribution; and (2) that the behavior of similarity scores for random se-

quences holds as well for real, unrelated, protein sequences. This second assertion is critical—an

26



accurate statistical theory for similarity scores of random sequences is of little value if real sequences

have properties that distinguish their scores from those of random sequences. It seems reasonable

that real protein sequences might have statistical properties that distinguish them from random se-

quences; of the 20400 = 10520 potential sequences of length 400 that could be generated at random

from 20 amino-acids, fewer than 105–108 unrelated sequences are thought to exist in nature, and

many structural biologists would argue that there are fewer than 103 distinct protein folds (Bren-

ner et al., 1997). Real protein sequences are constrained to fold into a compact three dimensional

structure with a physiological function; the fact that such a large fraction (typically 50–80%) of the

sequences in most organisms can be found in other distantly related organisms suggests that the fold-

ing constraint substantially restricts the universe of protein sequences; it is far easier to produce a new

protein sequence by duplicating an old one than by producing a sequencede novo. Thus, it would

not be surprising to learn that the folding/function constraint produced real protein sequences whose

similarity scores behave differently from those of random protein sequences.

The reliability of statistical estimates can be evaluated both by (1) comparing the observed distri-

bution of sequence similarity scores obtained in a search with the expected extreme value distribution

and (2) examining the expectation value for the highest scoring non-homologous sequence. Fig. 5

shows the distribution of sequence similarity scores for two query sequences, an “average” protein

sequence,pyre colgr , orotate phosphoribosyltransferase, and a protein sequence with a biased

amino-acid composition,prio atepa , major prion precursor. Two sets of similarity scores are

shown for each sequence. One set shows the scores obtained when all the amino-acid residues in

the library are examined; the second shows the scores when low-complexity sequences, or regions of

sequenced with a reduced or biased amino acid composition, are removed (Wootton, 1994). With the

“average” protein, the distributions of the “complete” database scores and “high-complexity” scores

are indistinguishable. With the prion protein (Fig. 5B), there is some difference in the central portion

of the distribution, but the greatest differences are seen for the highest scoring sequences, where there

are typically 2–3 times as many “raw” scores as expected between 4–5 standard deviations above

the mean, and 5–10-times as many scores as expected from 5–7 standard deviations above the mean.

This effect of biased composition is largely removed by searching against a “seg ’ed” database that
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Figure 5: Distribution of sequence similarity scores
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residue in a gap and−2 for each additional residue.λ andK were estimated by maximum likelihood
(-z 2 option, Pearson, 1999).
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has had low complexity regions removed.

The effect of biased composition is seen more dramatically by looking at the number of very

high-scoring sequences and the expectation value of the highest scoring unrelated sequence. When

prio atepa is used as a query, 198 library “raw” sequence scores havez≥ 7.0;6 this is reduced

to 28, 26 of which are related to the query, when the “seg ’ed” database is used. Likewise, when

the “raw” sequences are examined, the highest scoring unrelated sequence is a glycine-rich cell wall

protein that obtains an expectation value ofE() < 10−8 and there are 90 unrelated sequences with

10−8 ≤ E()≤ 0.01. In contrast, with the “seg ’ed” database the highest scoring unrelated sequence

has an expectation value ofE() = 0.012 and the second highest unrelated sequence hasE() = 0.99.

Reliable statistical estimates—statistics that estimateE() < 0.02 about 2% of the time—allow

much more sensitive searches. If an investigator can have confidence that an unrelated sequence will

obtain a score ofE()< 0.001 about once in 1,000 searches,E()< 0.001 can be used to reliably infer

homology. However, if unrelated sequences sometimes obtainE()< 0.001 by chance, a more conser-

vative threshold may be adopted, e.g.E()< 10−6 or evenE()< 10−10. While using a very stringent

threshold for statistical significance ensures that one will rarely infer homology when the proteins

are unrelated, it also ensures that moderately distant evolutionary relationships will be missed. Thus,

both thefasta andblast developers have given high priority to the accuracy of the statistical

estimates, particularly for the highest scoring unrelated sequences (Brenneret al., 1998).

When evaluating the quality of statistical estimates for high scoring unrelated sequences, it is

important to examine real protein sequences, whose properties may differ from randomly generated

sequences. Fig. 6 summarizes the highest scoring unrelated sequence similarity scores obtained when

query sequences from 50 randomly selected Pfam protein families were used to search a database

of sequences with carefully annotated evolutionary relationships. Searches were done with either

random sequences generated from the 50 Pfam family queries, or with the queries themselves, against

either a “raw” protein sequence database, or one with low complexity regions removed. Fig. 6A

shows that even when random sequences are used to search the database, similarity scores can be

6Similarity scores 7 standard deviations above the mean have an expectation valueE()< 1.7 for
this database of 23,981 sequences.
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Figure 6: Predicted and Observed Statistical Significance
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Quantile-quantile plot of expectation values for searches with (A) 50 random sequences and (B) 50
real protein sequences for which the highest scoring unrelated sequence is known. Searches were per-
formed against a “raw” annotated protein sequence database (filled diamonds) and the same database
with low complexity regions removed (open squares). For each search, the highest score (A) or
highest scoring unrelated (B) sequence was recorded, and converted from an expectation (E()) to a
probability of obtaining thatE() using the Poisson formulap(E) = 1−e−E. Each set of 50 proba-
bilities was sorted from lowest to highest and plotted. The 50 query sequences was chosen from 50
randomly selected PFAM families (Sonnhammeret al., 1997) with 25 or more members. The ran-
dom sequences were obtained by shuffling the 50 real PFAM derived sequences. Searches were done
using the Smith-Waterman algorithm (ssearch33 ) using the default scoring matrix (BLOSUM50)
and gap penalties (−12/−2) with regression-scaled (binned) statistical estimates.
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much higher than expected (andE()-values much lower than expected) if low complexity regions

are present in the sequence database. Thus, when 50 random sequences were used, the lowestE()-

value was 0.006 from a match between a randomly shuffled human histone H1 (h10 human) and

other histone H1 sequences. This may simply reflect the fact that it is difficult to randomly shuffle a

sequence that is 30% lysine. However, when low complexity regions are removed, the observed and

expected distributions ofE()-values agree extremely well.

When real sequences are used as the query, the statistical estimates are not as accurate, even when

low complexity regions are removed. Most of the time however, the estimates are not far off. The

log/log plot in Fig. 6 emphasizes the searches that obtained the lowestE()-values for unrelated se-

quences, but 80% of the query sequences had expectation valuesE() > 0.1 (low by a factor of 2),

and 90% hadE()> 0.02 (low by a factor of 5) when low-complexity sequences were removed from

the database. In the search of the “seg ’ed” database, again the most “significant” unrelated simi-

larity score was involved alignments withh10 human. In the search against the raw database, this

alignment had anE()< 0.002 (low by factor of 10), against a “seg ’ed” database the score was even

lower,E()< 0.0006. Histone H1 has an exceptionally biased amino-acid composition, which cannot

be completely corrected for by removing low complexity regions from the database. However, for the

vast majority of query sequences (80–90%), unrelated sequences will have expectation values within

a 2–5 of their true frequency in database searches. Thus, thresholds of statistical significance between

0.001< E()< 0.01 against “seg ’ed” sequence databases will be reliable with rare exceptions.

The observation that the statistical significance estimates (E()-values) from similarity searches

with real, unrelated sequences are 2–5-fold less conservative than those obtained for genuinely ran-

dom sequences suggests that to a large extent, real, unrelated protein sequences have many of the

same statistical properties as random sequences. The major difference between real protein sequences

and random sequences seems to be the independent, identically distributed (i.i.d.) assumption for

amino-acid residue positions. In real, unrelated sequences, unusual amino-acid compositions are dis-

tributed in low-complexity clumps. Theseg program, which masks out these regions, removing

them from the similarity score calculation, can reduce the effect of clumps with biased composition,

but not eliminate it. Fortunately, the deviation fromi.i.d is modest in 80% of protein sequences. Other
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than the biased composition effect, no other property of “real” protein sequences has been identified

that distinguishes them from sequences built from picking amino-acids from a probability distribution

at random.

Summary—exploiting statistical estimates

The inference of homology from statistically significant sequence similarity is one of the most reliable

conclusions a scientist can draw. Indeed, the vast majority of bacterial,C. elegans, andDrosophila

genes are annotated largely on the basis of statistically significant sequence similarity shared by other

proteins with known structures or functions. This trend is certain to continue as sequence databases

become more comprehensive.

While the inference of homology from significant sequence similarity is reliable—sequences that

share much more similarity than expected by chance share a common ancestor—the inference tells

us much more about structure than function. Without exception, sequences that share statistically

significant similarity share significant structural similarity. However, homologous proteins need not

perform the same, or even similar functions. Functional inferences are most reliable when based

on assignments oforthology. Orthologoussequences are sequences that differ because of species

differences. This contrasts withparalogoussequences, which are produced by gene duplication

events. Whilehomologycan be demonstrated by sequence similarity, an inference oforthology is

best supported by phylogenetic analysis, which is considerably more challenging computationally. In

addition, many proteins are built from evolutionarily independent domains with different structures

and functions. The inference of homology is transitive—if proteinA is homologous toB andB is

homologous toC, even ifA andC do not share significant similarity—but it is critical that such infer-

ences be limited to the domain to which they apply. There is great concern that incorrect functional

assignments are greatly reducing the value of sequence database annotations because functional as-

signments are inappropriately extended to new family members based on a correct, but functionally

uninformative, inference of homology.

Statistical significance estimates, whether as expectation (E())-values or bit scores, are far more
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informative than the most commonly used measure of sequence similarity, percent identity. It has

been known for more that 20 years (Dayhoffet al., 1978) that percent identity is much less effective

than measures of similarity that distinguish biochemically similar and dissimilar amino acids, and

that recognize that some amino-acids mutate far more rapidly than others. Moreover, high sequence

identity is expected over very short regions by chance in unrelated sequences that share no structural

similarity (Kabsch & Sander, 1984). Thus, the inference of homology should always be based on

statistically significant sequence similarity using an appropriate scoring matrix (Altschul, 1991).

However, once homology has been established, measures of statistical significance are not good

measures of evolutionary distance. Two sequences that have diverged by the same amount, and thus

share the same average levels of sequence similarity, can have very different similarity scores, with

very different levels of statistical significance, depending on their lengths. For example, two members

of the orotate phosphoribosyltransferase family,pyre colgr andpyre klula that share 48.5%

identity over 223 amino-acid residues have similarity scoresSbit = 161 withE()< 10−39, while two

members of the 2-times longer glucose transporter family with slightly lower identity (47.4% over

502 amino-acids) obtain a similarity score of 308 bits withE()< 10−82. Thus, similarity scores and

expectation values must be adjusted when comparing among different length protein sequences if

they are used as surrogates for evolutionary divergence.

This review of sequence similarity statistics has focused on protein sequence comparison for two

reasons: (1) protein sequence comparison is far more sensitive than DNA sequence comparison—the

evolutionary look-back time for protein sequences is typically 5–10-times greater than that for DNA

sequences (Pearson, 1997). Moreover, protein databases are more compact, so that more rigorous

algorithms can be used for similarity searching. (2) In addition, DNA sequences are well known

to have higher-order sequence dependence due to codon bias and simple-sequence repeat regions.

Because of the small nucleotide alphabet and the possible translation of normal complexity DNA

sequences into low complexity protein sequences, it is much more difficult to detect and correct for

deviations fromi.i.d in DNA sequences. Thus, in general, statistical estimates from protein sequence

comparisons are more reliable than the similar comparisons with DNA.

Our understanding of the statistical properties of biological sequences has improved dramatically
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over the past decade, so that most sequence similarity searching methods now include reliable sta-

tistical estimates. However, there is still room for improvement, as more searches are done with

more complex queries e.g. profiles, position specific scoring matrices (Altschulet al., 1997), and

three-dimensional sequence-structure alignments, whose statistical properties on real sequences are

not well understood. Fortunately, there is no shortage of data that can be used to develop and validate

new statistical approaches.
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