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The relationship between sequence similarity and structural similarity
has been examined in 36 protein families with ®ve or more diverse mem-
bers whose structures are known. The structural similarity within a
family (as determined with the DALI structure comparison program) is
linearly related to sequence similarity (as determined by a Smith-Water-
man search of the protein sequences in the structure database). The corre-
lation between structural similarity and sequence similarity is very high;
18 of the 36 families had linear correlation coef®cients r 5 0.878, and
only nine had correlation coef®cients r 4 0.815. Inclusion of higher-order
terms in the structure/sequence relationship improved the ®t by less
than 7 % in 27 of the 36 families. Differences in sequence/structure corre-
lations are distributed evenly among the four protein structural classes,
a, b, a/b, and a � b. While most protein families show high correlations
between sequence similarity and structural similarity, the amount of
structural change per sequence change, i.e. the structural mutation sensi-
tivity, varies almost fourfold. Protein families with high and low struc-
tural mutation sensitivity are distributed evenly among protein structure
classes. In addition, we did not detect strong correlations between struc-
tural mutation sensitivity and either protein family mutation rates or pro-
tein size. Our results are more consistent with models of protein
structure that encode a protein family's fold throughout the protein
sequence, and not just in a few critical residues.
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Introduction

Two general models attempt to explain how the
tertiary structure of a protein is encoded in its line-
ar sequence of amino acids: (1) the local model, in
which fold speci®city is coded in just a few critical
residues (10-20 % of the sequence); and (2) the glo-
bal model, in which the fold is formed by inter-
actions involving the entire sequence (Lattman &
Rose, 1993). The most obvious con®rmation of the
local model is the misfolding mutations associated
with certain diseases, such as cystic ®brosis
(Thomas et al., 1995). The global model is sup-
ported by numerous mutation studies which show
that most mutations at any position in a protein
sequence have no measurable impact on the pro-
tein function, and therefore the structure (Bowie
et al., 1990; Lattman & Rose, 1993; Matthews,
1987).
ing author:
mon ancestor.
The local model receives considerable support
from examples of structurally similar proteins that
do not share signi®cant sequence similarity, e.g.
actin and hexokinase (Kabsch & Holmes, 1995).
Since actin and hexokinase share similarity of over-
all structure and ATP-binding sites but lack signi®-
cant sequence similarity, they are frequently
referred to as remote homologues. The structural
similarity of remote homologues can be explained
as the conservation of certain critical ``core'' folding
residues, as the local model predicts.

If protein folding information is localized to criti-
cal residues, as the structures of remote homo-
logues apparently imply, we would expect that the
non-critical residues would be poorly constrained
during sequence evolution. Such heterogeneity in
functional constraint of amino acids would pro-
duce proteins with modest sequence similarity, but
nearly identical structures. Alternatively, a strong,
continuous correlation between sequence and
structural similarity would imply that the folding
information is distributed throughout the
sequence, not localized to particular residues. In a
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978 Sequence and Structural Change
continuous correlation of sequence and structural
similarity, each amino acid position contributes to
the overall structural similarity.

Early studies by Chothia & Lesk (1986, 1987)
showed a strongly non-linear relationship between
sequence and structural similarity (Figure 1(a)).
Very similar sequences showed modest structural
differences, but structural differences increased
dramatically as sequence identities dropped below
15-20 %. This observation supports the local model
for protein folding; changes in sequences at 80-
100 % identity have small effects on structure, but
changes at 15-25 % identity, which are more likely
to involve critical ``core'' residues, have a much lar-
ger effect. Recent studies have con®rmed their
®ndings with larger sets of protein structures
(Flores et al., 1993; Russell et al., 1997). All these
studies used the percent sequence identity and the
root-mean-square difference (RMSD) of superim-
posed Ca atoms to measure sequence and structur-
al similarity, respectively. The percent sequence
identity and RMSD have shortcomings as
measures of sequence and structural similarity
(Brenner et al., 1998; Levitt & Gerstein, 1998), and
thus a new evaluation of the correlation of
sequence and structural similarity of homologous
proteins is warranted.

To measure the correlation of sequence and
structural similarity, we used modern database
searching programs to estimate the signi®cance of
the sequence and structure similarity for 36 protein
Figure 1. Sequence similarity and structural similarity
A total of 346 homologous pairwise sequence alignments (ss
the DALI PDB database with 14 members of the blue coppe
cyanins, etc.) are shown. Open squares report all the structu
triangles show only alignments from pdb.nr80 from structur
signi®cant sequence and structural alignment scores. (a) The
identity versus DALI average-carbon chain deviation (RMS
(z-score, standard deviations above the mean) versus the
program. The RMSD versus percent identity relationship
relationships between the statistical signi®cance of the struct
ear, with a correlation coef®cient of 0.93 for the ®lled trian
data points is 0.91.
families (Table 1) with ®ve or more known struc-
tures from sequences that are less than 80 % identi-
cal. We ®nd that most of the evolutionary
structural change in a protein family is linearly
related to changes in sequence similarity, when
plotted in terms of statistical signi®cance or as
RMSD versus percent identity. Although we
detected signi®cant non-linear components in the
relationship between sequence and structural simi-
larity, these additional components explained very
little of the structural variance, supporting a lar-
gely global view of protein fold speci®city. The
slope of the linear ®t of sequence/structure simi-
larity de®nes how much the structure of a protein
is expected to change with a given amount of
sequence change. We call this quantity the struc-
tural mutation sensitivity and show that it differs
among protein families and is not correlated with
protein structural class or protein family mutation
rate.

Results

Sequence and structural similarity

Although percent sequence identity is routinely
used to quantify sequence similarity, it has been
known for more than 20 years that similarity
scores based solely on sequence identity perform
poorly when compared to substitution matrices
that recognized conservative substitutions with
from two perspectives (blue copper-binding proteins).
earch3) and structure alignments (DALI) from queries of
r-binding protein family (azurins, pseudoazurins, plasto-
ral alignment pairs found in DALI for this family; ®lled
es determined to better than 2.2 AÊ that have statistically
ssearch3 (Smith-Waterman) sequence alignment percent

D). (b) The statistical signi®cance of the ssearch3 score
statistical signi®cance (z-score) reported by the DALI
appears non-linear (Chothia & Lesk, 1986), while the
ural and sequence statistical signi®cance measures is lin-
gles (line shown). The correlation coef®cient for all the



Table 1. Protein families examined

Code Description Total pdb.nr80 Class

SPR Serine proteases (trypsins) 341 31 b
GLB Globins 334 29 a
CAL Calcium-binding EF hands 122 19 a
TOX Snake neurotoxins 45 16 b
AAA Alpha amylase 43 15 a/b
AZN Blue copper-binding 104 14 b
PEP Pepsins 74 13 b
THX Thioredoxin/GST 85 11 a/b
PLI Phospholipase A2 43 11 a
FAP Fatty acid-binding protein 38 11 b
HOX Homebox proteins 22 11 a
LPD Lipoamide dehydrogenase 51 10 a/b
STX Scorpion toxins 15 10 b
CYC Cytochrome c 53 9 a
FXN Ferredoxins 28 9 a � b
FRD 2Fe-2S ferredoxins 17 9 a � b
MIP Macrophage inflammatory protein 60 7 a � b
ABP Arabinose-binding protein 50 7 a/b
PER Peroxidases 49 7 a
VCP Viral coat proteins 49 7 b
PTI Trypsin inhibitor 35 7 a � b
ADK Adenylate kinase 21 7 a/b
LZM C-type lysozymes 149 6 a � b
RIP Ribosome-inactivating protein 20 6 a � b
DFR DHFR 79 5 a/b
TPI Triose phosphate isomerase 61 5 a/b
ADH Alcohol dehydrogenase 56 5 a/b
SEL Selectins 54 5 a � b
ISM Peptidyl-prolyl isomerase 40 5 b
CPR Cysteine proteases 38 5 a � b
ATH Antithrombin 30 5 a � b
FVN Flavodoxin 26 5 a/b
ANX Annexin 18 5 a
PHC Phosphocarrier protein 11 5 a � b
SOD Superoxide dismutase 22 5 a � b
SUB Subtilisin 44 5 a/b
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similar biochemical properties (Pearson, 1995;
Schwartz & Dayhoff, 1978); recently, shortcomings
in the percent identity measure were demonstrated
on a database of sequences whose structures are
known (Levitt & Gerstein, 1998). Percent identity is
a poor measure of sequence similarity in part
because of its dependence on the length of the
alignment (Sander & Schneider, 1991). While 30 %
identity is widely cited as a threshold of homology,
short alignments often share 30 % identity by
chance and, for alignments of less than ten amino
acid residues, 100 % identity is not a signi®cant
similarity. A similar length dependence can be
seen in structural comparisons using RMSD
measures (Swindells, 1996).

Modern similarity searching programs, such as
BLAST (Altschul et al., 1990, 1994, 1997), FASTA
(Pearson & Lipman, 1988), and ssearch3 (Pearson,
1996) do not use percent identity, or even raw
similarity scores, to characterize protein sequence
similarity; they use bit scores, probabilities, or
expectation values that re¯ect the statistical signi®-
{ The z-value expresses a similarity score, s in terms
of s, the number of standard deviations from the mean
similarity score m, in a search of a database of unrelated
sequences; z �(s ÿ m)s.
cance of the alignment score. The BLAST family of
programs use a normalized bit score (Altschul et al.,
1994) to characterize sequence similarity; FASTA
and ssearch3 programs use a library sequence
length-corrected z-value (Pearson, 1998). The prob-
ability of obtaining a sequence alignment bit score
or z-value{ by chance can be calculated using the
extreme value distribution (Altschul et al., 1994;
Altschul & Gish, 1996; Mott, 1992). We and others
have shown that length-corrected z-values are the
most effective at detecting distant evolutionary
relationships (Brenner et al., 1998; Pearson, 1995,
1998).

The DALI structure comparison program also
calculates a z-value to represent the signi®cance of
a structural similarity (Holm & Sander, 1993). In
this case it is less clear how to transform the
z-value into a probability of similarity by chance,
but recent work by Levitt & Gerstein (1998)
suggests that the extreme value distribution
accurately describes structural similarity between
non-homologous proteins as well as sequence
similarity. Just as sequence z-values are more
sensitive than percent identity, structural z-values
can detect statistically signi®cant structural
similarities that are not readily identi®ed using
RMSD (Levitt & Gerstein, 1998).
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In addition to providing more sensitive
measures of similarity, sequence and structure
z-values can provide reliable information about
the relationship between sequence similarity and
structural similarity. Figure 1(a) shows a common
representation of sequence/structure relationships
by plotting the increase in the average Ca deviation
between protein three-dimensional structures as
their protein sequences diverge. Figure 1 shows the
relationship between sequence and structure for
the blue copper-binding proteins (azurins and
plastocyanins), but very similar plots are seen for
most protein families, including globins, serine
proteases, and lysozymes (Chothia & Lesk, 1986).
A common feature of these identity/RMSD plots is
the dramatic increase in RMSD as comparisons are
made between proteins that do not share signi®-
cant structural similarity.

Figure 1(b) shows an alternate view of the
sequence structure relationship, by comparing the
z-value of the structural similarity shared by two
proteins (as determined by the DALI structural
Figure 2. Percent identity and alignment length versus z-s
from the globin family (pdb.nr100). (a) Sequence alignme
(b) Sequence alignment length versus sequence similarity z-sc
residues, the average length of a globin family member, unt
threshold for statistical signi®cance for this library. (c) Struct
(d) Structural alignment length versus structural similarity z-s
cant and align the entire length of the structure.
alignment program) with the z-value of the pro-
teins' sequence similarity (determined by the
Smith-Waterman algorithm; Pearson, 1996; Smith
& Waterman, 1981). In contrast to the curve seen
in Figure 1(a), comparison of structural statistical
signi®cance with sequence statistical signi®cance
suggests a linear relationship between sequence
similarity and structural similarity for this family
(r � 0.91).

While structural and sequence z-values are less
commonly used to measure similarity than percent
identity and RMSD, they provide an accurate rep-
resentation of these more familiar measures
(Figure 2(a) and (c)). The z-values provide the
additional advantage that one can know, in
advance, whether the structural or sequence align-
ment is statistically signi®cant. For the globin
family and the pdb.nr80 database, sequence align-
ments with z-scores greater than nine are statisti-
cally signi®cant (p() < 0.01), and the alignments
that obtain that level of signi®cance tend to align
the entire globin sequence (Figure 2(b)). When the
core. Alignments between 254 sequence/structure pairs
nt percent identity versus sequence similarity z-score.
ore. The alignment length is relatively constant near 145
il the sequence alignment z-score drops below z < 9, the
ural alignment RMSD versus structural similarity z-score.
core. All the structural alignments are statistically signi®-
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two sequences do not share statistically signi®cant
similarity, the Smith-Waterman algorithm fre-
quently aligns only a portion of the two sequences
(Figure 2(b)), even a DALI structural alignment
usually includes all the structure (Figure 2(d)).

Correlating sequence and structural similarity

The apparent biphasic relationship between
structural change and sequence change
(Figure 1(a)), supports the local model for protein
folding. From the local perspective, sequence
divergence from 0 %-50 % has relatively little effect
on RMSD, while sequences that are more than
80 % divergent show large structural deviations.
The z-score-based analysis (Figure 1(b)) supports
the alternative global model; there is a linear corre-
lation between sequence change and structural
change. This apparent contradiction appears lar-
gely due to three problems that are encountered
when comparing protein structures and sequences:
(1) severe redundancy of protein structural data
determined under different conditions, which can
cause the same protein sequence to have consider-
able variation and thus obscure the structure/
sequence relationship; (2) problems in aligning pro-
tein structures, even when the sequence similarity
is quite high; and (3) problems with assigning an
accurate percent identity in very distantly related
sequences.

The effects of structure redundancy and align-
ment accuracy on the apparent sequence/structure
relationship can be seen in Figures 1, 3 and 4. In
contrast to the open squares in Figure 1, which
show all the blue copper-binding protein struc-
ture/sequence relationships in the fully redundant
PDB database (349 alignments), the ®lled triangles
show the relationship between sequence and struc-
ture for those sequences and structures in the non-
redundant pdb.nr80 that share statistically signi®-
cant sequence and structural similarity (49 align-
ments). By focusing on sequences and structures
that share signi®cant similarity, it is more likely
that the structural and sequence alignments are
accurate. This constraint removes many of the
points between 20 and 25 % sequence identity. By
limiting our analysis to the far less redundant
pdb.nr80 structures, we avoid analyzing structures
that differ by as much as 1-2 AÊ RMSD, despite the
fact that they are 99-100 % identical. When only the
®lled triangles are considered, the correlation coef-
®cient for a linear regression of RMSD (structure)
versus percent identity (sequence) increases slightly
to r � 0.93 from r � 0.91 for the fully redundant
data.

Figures 3 and 4 illustrate the effect of sequence/
structure redundancy and structural resolution on
the correlation of structure with sequence in the
globin family. When every globin structure in the
PDB is included in the analysis (Figure 3(a), 1813
alignments, see the legend), the linear correlation
coef®cient between z(structure) and z(sequence) is
r � 0.83; when only alignments from pdb.nr80
between sequences that share statistically signi®-
cant sequence similarity are included, the corre-
lation increases to r � 0.96 (Figure 3(e)). When the
comparisons are done using percent identity and
RMSD, the correlation coef®cient increases from
r � 0.81 (Figure 4(a)) to r � 0.92 (Figure 4(e)). Com-
parison of the left and right panels in Figures 3
and 4 shows that removing lower-resolution struc-
tures and non-signi®cant sequence alignments can
both decrease and increase the correlation coef®-
cient. However, as the redundancy of the structural
data is reduced (Figures 3(a), (c), (e); 3(b), (d) and
(f); 4(a), (c) and (e); or 4(b), (d) and (f)) the struc-
ture/sequence correlation consistently increases.
This increase in structure/sequence correlation is
expected; by reducing the number of different
structures from identical (pdb.nr100), or nearly
identical (pdb.nr80) sequences, the sequence-inde-
pendent variation (different structures from the
same sequence) is reduced.

The large non-sequence dependent structural
variation appears to justify examination of struc-
ture/sequence relationships in a less redundant
database, because there is just as much (actually
slightly more) structural variation among
sequences that are more than 97.5 % identical (153
sequences, RMSD ranges from 0 to 1.7 AÊ , z(struc-
ture) ranges from 13 to 21) as there is among
sequences that do not share statistically signi®cant
sequence similarity (149 sequences, RMSD � 1.7-
3.2 AÊ , z(structure) � 5.5-13; Figures 3(a) and (b)
and 4(a) and (b)). While one might expect consider-
able variation among related proteins with very
low sequence similarity, an equally large amount
of variation among sequences that are less than
2.5 % different does not re¯ect genuine evolution-
ary differences. When sequences that are more
than 80 % identical are removed from the set of
alignments (Figure 3(f)), the amount of structural
variation among the 17 globins aligned with them-
selves is 0 AÊ RMSD (z(structure) � 19-21). Diverse
sequences show somewhat more structural vari-
ation; for the 20 weakest globin alignments with
statistically signi®cant sequence and structural
alignment scores, RMSD ranges from 1.9-2.7 AÊ

(z(structure) � 8.5-11). Thus, we focus on struc-
ture/sequence relationships among members of
the less redundant pdb.nr80 dataset, because by
reducing the extreme redundancy in the PDB data-
base, we remove very large amounts of structural
alignment ``noise'' that reduces our ability to
explore sequence/structure relationships.

A more comprehensive evaluation of the
relationship between sequence change and struc-
tural change is shown in Figure 5. Normalized
z-score structure/sequence correlation coef®cients
were determined for each of the 36 protein families
with ®ve or more members in pdb.nr80 (Table 1).
Half of the protein families had linear correlation
coef®cients greater than 0.878, implying that more
than 75 % of the structural variance for these
families could be explained by sequence variance.
Table 2 summarizes the median, ®rst, and third



Figure 3. Sequence/structure cor-
relations: redundancy and resol-
ution. The relationship between
sequence similarity and structural
similarity is shown for six samples
of the globin family structures.
(a) Structural similarity (normalized
DALI z-score) versus sequence simi-
larity (normalized ssearch3 z-score)
for all 334 globin structures in
the fully redundant PDB database.
A total of 1812 structural alignment
scores reported by DALI are
shown. (b) Structural similarities
are shown only for the structures
determined by crystallography to
better than 2.2 AÊ resolution with
statistically signi®cant sequence
and structural similarity (1185
alignments). Structural similarities
are shown only for structures in
the non-redundant (c) pdb.nr100
and (e) pdb.nr80 databases. Statisti-
cally signi®cant similarities are
shown for structures in the
(d) pdb.nr100 and (f) pdb.nr80
databases that were determined to
<2.2 AÊ resolution. Linear corre-
lation coef®cients for the sequence/
structure regression lines are
shown. (a) Excluded three DALI
alignments between the globin
structures 1myf and other globins,
because two of the three align-
ments were not structurally signi®-
cant although the sequence
alignments showed >50 % and
>90 % sequence identity. Examin-
ation of the structurally implied
sequence alignment reported by
DALI and the superimposed
structures clearly show that the
structural alignment was incom-

plete. Likewise, all three 1mbs alignments were excluded because of very poor structural alignments. The point in (a)
where z(seq) � 27, z(struct) � 1.4 (1spg versus 1baba) is another example of a clearly incorrect DALI structural align-
ment, but other alignments with these two structures are correct. Removing this point improves the correlation coef®-
cient to r � 0.835.
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quartile linear correlation coef®cients for both the
z(structure)/z(sequence) and RMSD/percent iden-
tity data for the structures summarized in Figure 5,
and also for the more redundant datasets and
those containing lower resolution structures. The
linear correlation coef®cients increase slightly
when RMSD and percent identity are plotted for
the pdb.nr80, pdb.nr100, and redundant datasets,
except for the median of the high-resolution, fully
redundant set. Thus, when alignments between
structures in pdb.nr80 are examined, more than
75 % of the structural variance can be explained by
sequence variation in 18 of the 36 families; and
when alignments between all the redundant struc-
tures in the PDB are considered, 53 (z(structure)/
z(sequence)) to 60 % (RMSD/percent identity) of
the structural variance is due to sequence variance
in half the families. In contrast, linear correlation
coef®cients calculated for alignments between non-
homologous proteins averaged 0.262. These high
correlations within protein families imply that the
structural variation of each family is largely the
result of variation in the sequence.

The linear correlation coef®cient between
sequence and structural similarity for each family
can be thought of as the amount of structural vari-
ation that is explained by sequence variation. Cor-
relation coef®cients depend on two factors, the
slope of the structural-similarity/sequence-simi-
larity relationship and the amount of residual
noise that does not depend on sequence change.
The top panel for each protein family in Figure 5



Figure 4. Sequence/structure cor-
relations: percent identity and
RMSD. The same pairwise com-
parisons shown in Figure 3 are
plotted using percent sequence
identity and DALI structural simi-
larity reported as RMSD for
comparisons of globin family
members. (a) The fully redundant
pdb. (b) Alignments involving
structures determined to <2.2 AÊ .
All or high-resolution structures
from (c), (d) pdb.nr100 or (e),
(f) pdb.nr80. Three structures are
excluded as noted in Figure 3.
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shows the structure/sequence correlation coef®-
cient; the bottom panel shows the difference
between each structure/sequence data point and
the regression line (the residuals). In general, the
families with the highest correlation coef®cients
have the least amount of scatter around the
regression line (e.g. ADH, LZM, and PER) or they
have a large number of data points with a high
slope (AZN). We have the highest con®dence in
the structure/sequence relationship when the data
samples a wide range of sequence similarity. For
some families, most of the data points involve
either very high or very low sequence similarity
(e.g. ABP, DFR, and HOX); in these cases new
structural data from sequences that are intermedi-
ate in similarity might reduce (or improve) the
correlation. Nevertheless, currently available data
show a very strong linear correlation between
structural change and sequence change for most of
the protein families examined.
Although most of the variation in structural
similarity can be predicted by linear changes in
sequence similarity, it appears that at low sequence
similarity (<25 % identity), the slope of the struc-
ture/sequence relationship changes in some pro-
tein families (Figures 1(a), 3(f) and 4(f)). We
examined these potential ``higher-order'' effects by
®tting the data to a quadratic polynomial and
restricted cubic spline polynomials (four knots).
Linear, quadratic, and restricted cubic spline ®ts to
the azurin blue copper-binding protein and globin
families are shown in Figure 6. (These families
were selected because they represent the amount
of improvement obtained with a restricted cubic
spline ®t by half or three-quarters of the families.)
Statistical analysis of the higher-order polynomial
®ts show that the coef®cients of the higher-order
terms were signi®cantly different from zero, and
thus that the higher-order terms provided an
additional signi®cant reduction in variance. How-



Figure 5. Sequence similarity and structural similarity is highly correlated. Linear correlation coef®cients for
comparisons of normalized ssearch3 z-scores with normalized DALI z-scores for 36 protein families with ®ve or more
members in pdb.nr80 are shown. Whenever possible, data from structures determined to less than 2.2 AÊ are shown
(®lled symbols) when more than ten structure/sequence pairs were available. For MIP, low-resolution pdb.nr100 data
are shown. The other open symbols summarize low-resolution pdb.nr80 data. The horizontal line indicates the
median correlation (0.878) from the least redundant, highest-resolution datasets; the shaded region indicates the
upper (0.931) and lower (0.815) quartiles. The bottom half of each panel reports each of the residual distances
between the least-squares regression line and the structure/sequence similarity pairs. Family codes are shown in
Table 1.
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ever, as Figure 6 shows, the effect of the additional
terms is modest. To measure the magnitude of this
effect, we calculate the ``adequacy'' of linear versus
quadratic or restricted spline ®ts to the data (see
Methods). For the data z(structure) versus
z(sequence) relationships shown in Figure 5, the
median adequacy for the linear versus quadratic ®t
was 0.983, indicating that 98.3 % of the structural
variance that could be explained by the more com-
plex ®t could be explained by a linear relationship
(i.e. the ratio of the adjusted r2 of the linear model
to the non-linear model was 0.983). The ®rst and
third adequacy quartiles were 0.996 and 0.955,
indicating that for 25 % of the families, the quadra-
tic ®t provided almost no improvement, and for
75 % of the families, the improvement was less
than 5 %. For the linear versus restricted spline ®ts,
the median adequacy was 0.979; the ®rst and third
quartiles were 1.000 and 0.944. For the RMSD
versus percent identity, linear/quadratic adequacy
quartiles were 1.000, 0.988, and 0.951; linear/spline
quartiles were 0.995, 0.971, and 0.935. Thus,
although higher-order terms do signi®cantly
improve the structure/sequence ®t, the additional
terms account for less than a 5 % relative improve-
ment in the variance in half the families, and less
than 7 % in three-quarters of the families. Almost
all the relationship between structural similarity
and sequence similarity can be explained by a line-
ar model.

The BLOSUM50 scoring matrix (Henikoff &
Henikoff, 1992) was used to measure sequence
similarity for the correlations in Figure 5, because
it performs well in identifying distantly related
sequences (Pearson, 1995). However, if protein fold
speci®city were coded by a small number of critical
residues, we might expect that the BLOSUM80
matrix, which is derived from the most highly



Table 2. Sequence/structure linear correlation coef®cients

Median First quartile Third quartile
z(str)/ RMSD/ z(str)/ RMSD/ z(str)/ RMSD/
z(seq) %ident. z(seq) %ident. z(seq) %ident.

Figure 5 0.878 0.916 0.931 0.953 0.815 0.839
pdb.nr80 0.862 0.908 0.916 0.952 0.798 0.836
pdb.nr100 < 2.2 AÊ 0.870 0.876 0.915 0.922 0.760 0.805
pdb.nr100 0.797 0.840 0.872 0.889 0.727 0.753
Redundant < 2.2 AÊ 0.841 0.803 0.885 0.905 0.657 0.707
Redundant 0.732 0.777 0.811 0.840 0.597 0.634

Linear correlation coef®cients determined for the datasets shown for either the z(structure)/z(sequence) relationship or the RMSD/
percent identity relationship. The median correlation coef®cient r, and correlation coef®cients for the ®rst quartile (75 % of the
families score worse) and third quartile (25 % of the families score worse) are shown. Data from 36 families are shown for the fully
redundant and pdb.nr100 datasets. pdb.nr80 is missing one family (MIP); pdb.nr100 < 2.2 AÊ is missing seven families and the fully
redundant <2.2 AÊ set is missing two families.
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conserved residues in protein blocks (Henikoff &
Henikoff, 1992), might increase the correlation
between sequence and structure. If certain highly
conserved residues largely determine a protein's
structure, the correlation between sequence and
structural similarity should go up when BLO-
SUM62 or BLOSUM80 are used for sequence com-
parison. To test this, we repeated the previous
experiments using the BLOSUM62 and BLOSUM80
matrices (Figure 7). The correlation coef®cients for
24 of the 36 protein families (67 %) decrease when
conservative comparison matrices are used, but the
decrease is never signi®cant. For only 12 of the 36
protein families, the correlation coef®cient calcu-
lated using the BLOSUM62 matrix is greater than
the correlation with the BLOSUM50 matrix. This
evidence further supports the global model; for
most protein families, the most highly conserved
residues do not account for more of the structural
variability than ``average-conserved'' residues.

Structural mutation sensitivity differs
among families

The slope calculated from a regression of struc-
tural versus sequence similarity provides further
insight into the structural evolution of protein
families. The slopes of these regression lines esti-
mate how much a family's structure would be
expected to change with a given amount of
Figure 6. Higher-order relation
ships between sequence and
structural similarity. Regression
using non-linear sequence/struc
ture terms are shown for blu
copper-binding proteins (a), (b)
and globins (c), (d). Regression ®t
to a line, a quadratic equation, and
a restricted cubic spline (fou
knots) for either (a), (c) z(struc
ture)/z(sequence) data or (b), (d
RMSD/% identity data are shown
The azurin blue copper-binding
family demonstrates the median
improvement found after ®tting th
quadratic or spline functions; th
globin family shows an amount o
improvement achieved by onl
25 % of the protein families.
-
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Figure 7. Structure/sequence
correlations do not vary with
different BLOSUM matrices.
Sequence similarities were
calculated with BLOSUM50 (^),
BLOSUM62 (*), and BLOSUM80
(~) matrices, and the correlation
coef®cient of structural similarity
with sequence similarity is shown
for least-redundant, high-resolution
datasets as in Figure 5. Median
(continuous lines) and upper and
lower quartiles (broken lines) for
the BLOSUM50 correlation coef®-
cients are indicated.
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sequence change, i.e. the structural mutation sensi-
tivity. A small slope implies that the protein struc-
ture for that family is not very sensitive to
sequence mutation; that is, the structure will
change very little over the range of sequences in
the family. In contrast, a large slope signi®es pro-
tein structures that differ even with modest
sequence changes. As seen in Figures 8 and 9,
mutation sensitivity can vary widely among pro-
tein families.

Structural mutation sensitivity varies 3.9-fold
(0.0545-0.213) among different protein families
(Figures 8 and 9). The viral coat proteins (VCP,
slope � 0.06, r � 0.66) might be expected to have a
low structural mutation sensitivity because viral
replication can be error-prone and substantial
sequence divergence must be accommodated. In
contrast, a protein family like the globins might be
expected to have high structural mutation sensi-
tivity, because of the large number of internal con-
tacts that stabilize the packed helices. However,
there does not appear to be an obvious relationship
between structural mutation sensitivity and struc-
tural class (Figure 9). In the 36 protein families that
we examined, proteins with similarly low structur-
al mutation sensitivity are found in the a (annex-
ins, ANX), b (viral coat proteins, VCP), a/b
(adenylate kinase, ADK), and a � b (superoxide
dismutase, SOD) structural classes. In general, pro-
tein families with lower structural mutation sensi-
tivity have lower structure/sequence correlation
coef®cients, as expected from the de®nition of cor-
relation coef®cient. Less of the structural variance
can be explained by sequence change when there
is little change in structure with large changes in
sequence. The largest structural mutation sensi-
tivities are found in the b (scorpion toxins, STX,
slope � 0.21) and a � b (ferredoxins, FXN,
slope � 0.20) structural classes, while a and a/b
proteins have a slightly lower range of structural
mutation sensitivity (threefold). Nonetheless, it is
striking that similar amounts of sequence change
can cause dramatically different amounts of struc-
tural change. Since structural mutation sensitivity
is not tightly associated with protein structural
class, we considered two additional factors affect-
ing mutation sensitivity: the average length of
members of the family and the protein family
divergence rate.

Differences in structural mutation sensitivity
might simply be the result of size differences
among the protein families. Single amino acid sub-
stitutions primarily in¯uence the local confor-
mation of a protein structure (Bowie et al., 1990;
Matsumura et al., 1988; Sandberg & Terwilliger,
1989). In a large protein, that local change is small
compared to the rest of the protein structure that
stays the same. In a small protein, local changes



Figure 8. Structural sensitivity
to sequence change varies
among protein families. Length-
normalized sequence-structure
similarity relationships are shown
for four protein families: (a) peroxi-
dases (PER, a, 16 sequence/struc-
ture pairs); (b) snake neurotoxins
(TOX, b, 12 pairs); (c) lipoamide
dehydrogenase (LPD, a/b, 33
pairs); and (d) ferredoxins (FXN,
a � b, 18 pairs). Linear correlation
coef®cients of the regression line
for structure versus sequence are
shown next to the structural class.
The slope of the structure/sequence
relationships (structural mutation
sensitivity) is also shown.
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should be much more noticeable in the molecular
context. Thus, one might expect to ®nd that the
structural mutation sensitivity of large proteins is
less than that of small proteins.

We compared the structural mutation sensitivity
to the average protein size for each family
(Figure 10(a)). As expected, families of large pro-
teins have low mutation sensitivities, but surpris-
ingly, small proteins have a wide range of
structural mutation sensitivities. For example, cal-
cium binding EF-hands (CAL), a protein family of
length 130 residues, had a structural mutation sen-
sitivity of 0.069, which is lower than that of a-amy-
lases (AAA, structural mutation sensitivity 0.076),
the longest protein (525 residues) in our dataset.
Another small protein, MIP (average length 71 resi-
dues) had a structural mutation sensitivity of
0.092. Because we calculated the structural
mutation sensitivity using sequence and structural
similarity z-scores that were normalized for the
query length, the mutation sensitivity/length
relationship does not re¯ect a dependence of simi-
larity on length. The variation in structural
mutation sensitivity among small and medium
length proteins indicates that protein size is not the
only factor that determines structural mutation
sensitivity.

Another possible in¯uence on structural
mutation sensitivity is a protein family's ``molecu-
lar clock'' or mutation rate. The low mutation sen-
sitivity of the viral coat proteins suggests that
mutation sensitivity may be directly related to
mutation rate; proteins that evolve rapidly may
have low mutation sensitivities to preserve their
structure, and thereby their function. Conversely,
proteins with high structural mutation sensitivity
may not be able to tolerate a high rate of sequence
mutation. Mutation rates can be investigated by
examining average mutation rates for orthologous
lineages.

Evolutionary mutation rates for the 16
families with independently derived dates for the
last common ancestor (LCA) and clearly ortholo-
gous lineages were estimated by two different
methods (Table 3). The method by Langley & Fitch
(1974) derives the estimate from a least-squares
regression ®t of evolutionary distance and LCA
dates. Xun Gu's method (Gu & Zhang, 1997)
accounts for heterogeneity of mutation rate among
the residues of the protein sequence. The ordering
of the mutation rates is moderately consistent
between the Langley-Fitch method and the Gu
method (Table 3). Families that are faster (or
slower) than the median with the Langley-Fitch are
always faster (or slower) than the median with
Gu's method. Complete consistency is not
expected, since Gu's method is more rigorous than
Langley and Fitch's method, but the limited con-
sistency reassures us that the rate calculations are
sensible. A comparison of the mutation rates to the
structural mutation sensitivity (Figure 10(b)) shows
that the proteins with the lowest mutation rates



Figure 9. Structural mutation sensitivity does not depend on structural class. Structural mutation sensitivity (the
slope of the sequence/structure relationship), and the standard error of the slope, is plotted for each of the 36 protein
families. Filled symbols indicate families with a sequence/structure correlation greater than the median; open sym-
bols show families with sequence/structure correlations less than or equal to the median.
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(CAL, LPD, and SOD) have the lowest structural
mutation sensitivity, but THX, with only a slightly
higher mutation rate, has one of the highest struc-
tural mutation sensitivities, and ADK, with the
highest mutation rate, has one of the lowest
Table 3. Protein family divergence rates

Method Langley-Fitch

Fastest GLBm 12
GLBa 11
PEP 8
GLBb 7
ADK 7
LZM 6
ATH 5
PER 5
SEL 4
CYC 3
DFR 2
ADH 2
SPR 2
THX 2
TPI 1
SOD 1
LPD 1

Slowest CAL 0
structural mutation sensitivities. In general, there
appears to be no consistent relationship between
structural mutation sensitivity and divergence rate,
although generalizations must be tentative with
such a small sample.
Gu

.4 LZM 13.3

.5 GLBa 11.6

.9 ATH 10.8

.9 ADK 10.1

.1 GLBb 9.9

.0 PEP 9.5

.6 LPD 8.1

.0 SPR 6.2

.1 GLBm 6.1

.3 DFR 5.7

.8 SEL 5.0

.6 TPI 4.2

.5 ADH 4.0

.2 PER 3.8

.4 THX 2.9

.1 CYC 2.7

.0 SOD 2.7

.6 CAL 0.6



Figure 10. Structural mutation sensitivity does not depend on mutation rate or protein size. (a) The relationship
between structural mutation rate and average protein family length. Filled symbols indicate families with sequence/
structure correlation coef®cients greater than the median; open symbols indicate families with correlation coef®cients
less than or equal to the median. Error bars report the standard error of the structural mutation sensitivity slope esti-
mate. (b) The structural mutation sensitivities from Figure 4 are plotted against protein family mutation rates
(Langley & Fitch, 1974) for 16 protein families for which a mutation rate could be estimated.
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Discussion

We have examined the relationship between
sequence change and structural change in 36 pro-
tein families with ®ve or more diverse members
whose structures are known. For most of the pro-
tein families that we examined changes in structur-
al similarity are linearly dependent on changes in
sequence similarity. In the globin family (Figure 2
and 3(d)), a change in a sequence z-score from
z � 15 to 25 standard deviations above the mean
(24.9 % identity at z � 15 to 30.3 % identity
at z � 25) will change the structural z-score from
z � 11.7 standard deviations (2.68 AÊ RMSD)
to z � 13.0 (2.50 AÊ RMSD). Likewise, a change in
sequence similarity from z � 80 (60.3 % identity) to
z � 90 (65.7 % identity) changes the structural simi-
larity from z � 20.4 (1.48 AÊ RMSD) to z � 21.7
(1.29 AÊ RMSD). Thus, for the globins, a ten stan-
dard deviation change from 24.9 % identity to
30.3 % identity has the same effect on structural
similarity (�0.18 AÊ RMSD) as a sequence �z � 10
change from 60.3 % identity to 65.7 % identity. This
strong linear correlation is seen in at least three-
quarters of the protein families (27 out of 36
families had r 5 0.815, implying that almost 66 %
of the variance in structural similarity could be
accounted for by the change in sequence simi-
larity).

Based on the results shown in Figures 3-6 and 8,
we conclude that, on average, most sequence
changes cause detectable structural changes and
that the amount of structural change per sequence
change (structural mutation sensitivity) is relatively
constant within a protein family. While this obser-
vation is not completely unexpected (it is not
surprising that changes in sequence cause changes
in structure) our result is inconsistent with the
widely held view (Chothia & Lesk, 1986, 1987),
exempli®ed by the continuous line in Figure 1(a),
that changes in protein sequence from 50-80 %
identity are largely structurally neutral, but that
below 30 % identity one sees changes in a core of
highly conserved critical residues that determine
the structure of a protein.

We believe that our conclusions differ from this
conventional view for several reasons. First, we
have focused on structure comparisons and
sequence alignments between sequences that share
statistically signi®cant sequence similarity
(E < 0.001). Sequences that do not share statistically
signi®cant similarity are dif®cult to align accu-
rately (Figure 2(b)). Second, by working with a less
redundant (pdb.nr80) set of protein structures, we
reduce the structural variance for sequences that
are 80-100 % identical. The major effect of using the
less redundant dataset is to reduce dramatically
the number of structures for a single sequence,
which in turn reduces the amount of structural
variation that is not the result of sequence change.
For example, in the upper right-hand corner of
Figure 2(a) and (b), there are several dozen struc-
ture/sequence pairs with structural z-scores that
differ by more than ten standard deviations for
sequences that are identical or nearly so. When the
less redundant datasets are used, the amount of
structural variation among these nearly identical
sequences is reduced twofold and substantial
structural noise is excluded.

Finally, the linearity of the structure/sequence
relationship can be more readily detected in this
study because we examine each protein family sep-
arately. Because of differences in structural
mutation sensitivity, a composite structure/
sequence plot that combined the points from all 36
protein families would show a relationship like the
curved line in Figure 1(a). However, this curve
would be simply the sum of the different linear
structure/sequence relationships for each family.
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Our results do not imply that all mutations have
similar effects, even within a single protein family.
However, virtually all mutations have measurable
effects and, for most protein families, similar
amounts of change in protein sequence appear to
cause similar amounts of change in protein struc-
ture. The data are best for families with a large
number of structures sampled across sequence
z-scores from 10-100 or more, i.e. for families that
have closely (>70 % identity), moderately (30-70 %),
and distantly (15-30 %) related members. The
strong linear correlation of sequence and structural
similarity supports the global model for protein
folding and suggests that, within a protein family,
most changes in sequence are correlated with a
constant, measurable change in structure.
Although non-linear components of the sequence/
structure relationship were detected, the adequacy
of the linear component is typically greater than
95 %, supporting a mostly global model of protein
folding.

Families with lower structure/sequence corre-
lations must have other sources of apparent struc-
tural variation that are not accounted for by
sequence change. For some families, ligand or ion-
binding, structure-determination conditions, and
random protein ¯exibility in¯uence the structural
variation of closely related proteins. Structural
variation in the calmodulins is associated with the
formation of protein complexes and with the bind-
ing of calcium and other ligands. For example, the
structures of bovine recoverin with Ca2� (1rec) and
without (1iku) have an RMSD of 3.6 AÊ .

In another family where the structure/sequence
relationship is weaker (serine proteases) the DALI
program sometimes fails to align the structures
properly and thus introduces artifactual structural
variation. While DALI aligns only 117 residues of
salmon elastase (1elt) and human plasminogen
activator (1lmwB) to 1.7 AÊ RMSD, the structure
alignment program SARF2 (Alexandrov, 1996)
aligns 227 residues of the same protein pair to
1.69 AÊ . The shorter alignment of DALI is clearly
erroneous and yields a much lower structural simi-
larity score than the full alignment would. Unfor-
tunately, SARF2 does not calculate z-scores.

We also examined the role of synthetic or
mutant sequences in non-sequence dependent
structural variation. Such sequences are excluded
from pdb.nr80 because they are typically more
than 80 % identical with wild-type sequences, but
in the three largest protein families in pdb.nr100 96
of the 1097 serine proteases are non-wild-type
sequences; globins contain 123 of 591, and lyso-
zymes contain 126 of 233. Non-wild-type
sequences did not contribute signi®cantly to the
other families. When the non-wild-type sequences
and wild-type sequences were analyzed separately,
the structure/sequence linear correlation coef®-
cients differed by less than 10 % and structural
mutation sensitivities by as much as 20 %. Thus,
for these three families at least, it appears that non-
wild-type structures show the same structure/
sequence dependence seen in ``natural'' sequences.

Surprisingly, we also found that the structural
mutation sensitivity can vary as much as fourfold
among different protein families. Despite efforts to
relate these differences to average structural class,
mutation rate, and protein size, we were unable to
account for the variation in mutation sensitivity.
Differences in structural mutation sensitivity may
re¯ect differences in the nature and extent of inter-
actions between basic elements of secondary struc-
ture.

Our attempts to understand better the biophysi-
cal basis for differences in structural mutation sen-
sitivity were hampered by the lack of structures
from proteins that sample a broad range of
sequence divergence within a protein family. Of
the 1326 structure/sequence alignment pairs
shown in Figure 5, half belong to the ®ve largest
families: serine proteases, pepsins, calmodulins,
globins, and phospholipases A2. Thus, while we
can conclude that different structural classes con-
tain members with a wide range of structural
mutation sensitivities, insuf®cient data are avail-
able to test whether non-homologus members of
the same fold family have similar structural
mutation sensitivities, or whether very distant
branches of the same protein family can have
detectably different structure/sequence relation-
ships. To improve our understanding of intra-
family structure/sequence relationships, we need
more structures from sequences that are 30-50 %
identical with sequences of known structure, in
preference to structures from sequences that are
more than 90 % identical or less than 20 % identi-
cal. Currently only two families in pdb.nr80, serine
proteases and globins, have more than 20 struc-
tures, and only six families have more than 12
structures (Table 1). A ®ve- to tenfold increase in
the number of structures of intermediate sequence
diversity (50 families with 12 or more diverse
structures) should provide fundamental insights
into the differences in protein folding interactions
responsible for differences in structure/sequence
relationships.

Methods

Sequence and structure comparisons

Sequence and structure similarity searches were
performed on a database of 1770 (pdb.nr80)
sequences for which structures have been deter-
mined. This database was produced from the 9039
sequences in the PDB (release 80) by a simple selec-
tion and database search process that identi®ed
related sequences in the fully redundant database
(E() < 10ÿ4) that were 100 % identical (pdb.nr100)
or more than 80 % identical (pdb.nr80). The
Pdb.nr100 and pdb.nr80 databases are available
from ftp.virginia.edu/pub/fasta. The non-redun-
dant databases were constructed from the
pdb seqres.txt databases for PDB release 80,
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obtained from ftp.pdb.bnl.gov/pub. Non-protein
sequences were removed from pdb seqres.txt to
produce the redundant database pdb.r.

Non-redundant sequence databases were created
as follows: a nascent database was created by pla-
cing the ®rst sequence of pdb.r into a nascent data-
base ®le. The remaining sequences of pdb.r were
searched against the nascent database using
ssearch3, one query sequence at a time. if the high-
est scoring sequence from the nascent database
had a similarity score with an expectation value
less than 10ÿ4 and a percent identity below the
identity threshold (100 % or 80 %), the query
sequence was added to the nascent database.
Expectation values were calculated using the
Altschul-Gish scoring parameters (Altschul & Gish,
1996) based on a database size of 10,000 sequences.
When every sequence from pdb.r had been com-
pared to the nascent database, the nascent database
was ®nished.

Protein family selection

To select a set of homologous proteins, we
initially surveyed potential protein families in the
PDB with a set of 46 families from the database
PIR39b (Pearson, 1995). This dataset led to the
identi®cation of 18 protein families with known
structures of high sequence diversity. An
additional 26 protein families were found by com-
paring sequences from the SCOP superfamilies
(Murzin et al., 1995) to the pdb.r database using
FASTA, for a total of 44 protein families that could
be used in our study. Eight of these families were
excluded because they had fewer than ®ve mem-
bers in pdb.nr80, leaving us with 36 protein
families (Table 1). The PDB structure identi®ers for
the 342 structures in the 36 families from pdb.nr80
are listed in the Appendix.

DALI structural similarity searches (Holm &
Sander, 1993) were conducted using the WWW
interface at http://www2.ebi.ac.uk/dali/. Query
structures for DALI searches were chosen from the
pdb.nr80 database of structures with sequences
that are 580 % identical with any other query
from that family. The average Ca root-mean-square
deviation (RMSD), alignment length, and z-score
reported by DALI were saved for later analysis.
We tabulated the structural similarity scores
reported by DALI in two different ways. In the
simplest tabulation, we saved the DALI structural
z-value, RMSD, and percent identity for the PDB
structure identi®er that matched the entries in
pdb.nr80. In some cases, DALI might return higher
structural similarity scores for a structure that is
not in pdb.nr80, but which is encoded by a
sequence that is 100 % identical with the pdb.nr80
structure. For a second tabulation of structure/
sequence relationships, the best DALI similarity
score was used from the set of DALI similarity
scores from sequences that are 100 % identical to
the pdb.nr80 entry found in the DALI search. We
refer to these DALI similarity scores as DALI-
selected scores. Results with the pdb.nr80 DALI
score and the DALI-selected scores were indistin-
guishable.

For each protein pair reported in the DALI out-
put, sequence similarity was calculated using the
Smith-Waterman algorithm (Smith & Waterman,
1981) as implemented in the ssearch3 program of
the FASTA3 package (Pearson, 1996). Smith-Water-
man alignment scores were calculated using the
BLOSUM50 scoring matrix (Henikoff & Henikoff,
1992) with a penalty of ÿ12 for the ®rst residue in
a gap and ÿ2 for each additional residue. The stat-
istical signi®cance of the sequence similarity scores
was estimated using the statistical parameters
(Pearson, 1998) for the query sequence from an
ssearch3 database search of pdb.nr80. Expectation
values of the sequence matches were calculated by
sc to e, which converts a raw similarity score,
sequence length, and ssearch3 statistical par-
ameters to a z-score and statistical signi®cance.

We did not use the manually assigned SCOP
protein superfamilies (Murzin et al., 1995) directly
because more than half of the protein pairs that are
assigned as homologous in SCOP lack both signi®-
cant sequence and structural similarity (Levitt &
Gerstein, 1998). With the exception of two families,
the azurins/phycocyanins/plastocyanins (AZN)
and the thioredoxins/glutathione transferases
(THX), all the other proteins in our classi®cation
share either statistically signi®cant sequence or
structural similarity. The AZN and THX families
contain proteins that are just at the borderline of
signi®cant structural similarity, but that share com-
mon functional groups or co-factors (Cu2� for
AZN and sulfur in THX). In most cases, our com-
putationally based family assignments are very
similar to those of SCOP, but two families (LZM
and ADK) differ signi®cantly from the SCOP
classi®cation. In both cases, our families are much
smaller than the corresponding SCOP superfamily
because of lack of statistical support for the hom-
ology inferences of SCOP (Wood, 1999). Because
alignments are often inaccurate in the absence of
signi®cant similarity (Figure 2(b)), it is unlikely
that the additional homology assignments in
SCOP, which lacked signi®cant structural simi-
larity, would have been useful for this study.

Regression analysis

Linear and quadratic regression of DALI and
ssearch3 structural and sequence similarities was
done in S� version 3.4 using the function 1m(). To
minimize apparent structural variation that is
unrelated to sequence differences, DALI results
were ®ltered to eliminate sequence redundancy
and low-resolution protein structures. When a
DALI search returned results from several struc-
tures with the same (100 % identical) sequence, the
highest DALI z-score was used. To ®lter redundant
structures with more than 80 % sequence identity,
those structures not found in pdb.nr80 were elimi-
nated. Whenever a suf®cient number of high-resol-
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ution (solved by X-ray crystallography to better
than 2.2 AÊ resolution), non-redundant (<80 % iden-
tical) structures were available, results from lower-
resolution structures were excluded. Restricted
cubic-spline polynomial ®ts to the structure/
sequence-similarity relationships were done in S�
using the Hmisc library (Hmisc S-plus function
library; programs available from http://lib.stat.
cmu.edu/s/Harrell, Spline knots were located at
the 0.05, 0.33, 0.67, and 0.95 quartiles of sequence
similarity. The effect of additional terms in
the regression of structure with sequence
was quanti®ed by using the adequacy ratio.
Adequacyquadratic � ar2

linear/ar2
quadratic, Adequacyspline

� ar2
linear\i r2

spline, where ar2 is the adjusted r2 pre-
dicted by the linear, quadratic, or restricted cubic
spline (four knots) relationship; ar2 is the r2

adjusted for the number of parameters used in the
®t, and ar2 � 1 ÿ (1 ÿ r2)(n ÿ 1/(n ÿ p), where n is
the number of data points and p is the number of
parameters in the regression ®t (p � 2 for a linear
®t).

To compare sequence/structure relationships
among many different protein families, the DALI
and ssearch3 z-scores were normalized so that pro-
tein families of different lengths could be com-
pared. Because the similarity score is the sum of
the individual similarities of each residue-pair in
the alignment, longer protein families will have
higher z-scores than shorter proteins at a given
level of sequence identity. Thus, when comparing
search results from families with proteins of differ-
ent lengths, we normalize the z-score by dividing
by the query sequence length (to produce an aver-
age z-score similarity per residue) and then multi-
ply by 100. Since DALI similarities are also
summed over the length of the alignment, a similar
query length effect can be seen in DALI z-scores,
and the same normalization was used. The result is
a normalized z-score, which expresses the z-score
that a match would get if it were calculated for a
100 residue query. Normalized z-scores do not
show an obvious relationship between query
length and z-score; homologous matches between
small proteins receive z-scores just as high as hom-
ologous matches between large proteins.

Protein family divergence rates

Sequences used in mutation rate calculations
were obtained from Swiss-Prot (Bairoch &
Apweiler, 1996), and sequence alignments were
constructed using CLUSTALW (Thompson et al.,
1994). Mutation rates were calculated using the
methods described by Langley & Fitch (1974) and
Gu & Zhang (1997). Sequences were selected to
maximize the number of fossil-derived last com-
mon ancestors. Trees were constructed using the
kitsch program of the PHYLIP package
(Felsenstein, 1989). Regression analysis using
distances derived from the trees was done in S � .
The rate estimate is made by dividing a mean dis-
tance by the LCA date for the appropriate taxo-
nomic group(s).
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Table A1. PDB structures used

Name Code Structures

a-Amylase AAA
1cdg 1cgt 2aaa 2exo 1xyza

2taaa 1amy 1cyg 1ppi 1xas 1xys 1ciu 1bpla 1bpab 2 amg

Arabinose-
binding protein

ABP
5abp 1pea

3gbp (1dbp) 2liv 2lbp 1pnra

Alcohol DH ADH
1cdoa

1adg 1agna 1qora 1teha

Adenylate kinase ADK
3adk 1akea 1uky 2ak3a 1ak2 1aky

1ukd

Annexin ANX
2ran 1aii

1ala 1ain 1ann

Anti-thrombin ATH
1hlea 1ovaa

7apia 2acha 1anti

Azurin AZN
2plt (3azua) 3pcy 7pcy 1aaj 1aiza 1paz 1pmy 1jer 1zia

9pcy 1plb 1nin 1adwa

Calmodulin CAL
1pal 1pvaa 2scpa 4cpv 4tnc 5pal 1omd 1rec 1rtp1 1tcob

(1clb) 1ctr 2sas 1scmb 1scmc 1cnpa 1syma 2mysb 2mysc

Cysteine
protease

CPR 1pe6 1aec (1ctea) 1ppo 1yal

Cytochrome c CYC
(1csu) 1hrc 3c2c 1ccr 1cxc

155c 1c2ra 1cry 1hroa

Dihydrofolate
reductase

DFR
3dfr (3drca) 8dfr 1dyr

(1dlr)

Fatty acid-
binding protein

FAP
1crb 1hmr (1icn) 1mdc 1opba

1alb 1cbq 1cbra 1ftpa 1pmpa 1eal

2Fe-2S
ferredoxin

FRD
1frra 1frd 2pia 1dox 1roe 1doi

1fxaa 1fxia 4fxc

Flavodoxin FVN 3fx2 1flv 1ofv 2frc (1fla)

Ferredoxin FXN
5fd1 1fdn 1fdx 1fxd 1blu

1fxra 2fxb 1rof 1clf

Globin GLB

(2spl) 3mba 3sdha 1ash 1ecn 1flp 1gdj 1hbg 1hsa 1hdsb 1lhs 1myt 1scta
1sctb 2lhb 1spga 1spgb

2dhba 2dhbb 1fdhg 1hbha 1hbhb 1hdab 1hlm 1hlb 1itha 1bina (1outa)
1outb

Homebox HOX
1enh 1fjla

(1ahdp) 1aplc 1ftz 1hdp 1ocp 1pou 1ftt 1yrna 1vnd

Proline
isomerase

ISM
2rmba 2rmca 1cyna 1lopa

1clh

Lipoamide DH LPD
1grg 1gera (1nhr)

2tpra 3lada 1lvl 1ndaa (1tdf) 1ebda 1vdc
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Lysozyme LZM
3lhm 1alc 1lmn 1jug

(2iffy) 2eql

Macrophage
inflammatory
protein

MIP
3il8 (1napa)

1huma (1msga) 1plfa 1rhpa 1rtna

Pepsin PEP
2psg 3app 3apre (3cms) 1htrb 1smra 1eaga

2er0e 2ren 1lyba 1lbb 1smea 1jxra

Peroxidase PER
1arp 1lgaa 1mnp 1qpaa

(3ccp) 1apxa 1scha

Phosphocarrier
protein

PHC
1ptf (1spha) 1pch

1hdn 1zer

Phospholipase
A2

PLI
3bb2 (3p2pa) 1poc 1poa 1ppa 1psj 1ae7

1aypa (1clpa) 1pp2r 1buna

Pancreating
trypsin inhibitor

PTI
2ptci 1aapa 1knt

1dem 1dtk 1shp 1bunb

Ribosome inactivating
protein

RIP
1abra 1ahc 1mrk

1apa 1apga 1pafa

Selectin SEL
1esl 1rdkl 1lit

1msba 1hup

Superoxide
dismutase

SOD
1mnga 3sdpa 1idsa 1isaa

1abma

Serine protease SPR

2ptn 2pkay 2sga 2tbs 2tbs 3gcta 3est 3sgbe 3rp2a (31pra) 1arb 1hpga
1hnee 1hyla 1sgt 1ton 1elt 1try 2sfa (1dst) 1fona (1hava)

1bbre 1bbrh (2trm) 1hcga 1trna 1lmwb 1fuja 1pfxc 1rtfb 1pytd

Scorpion toxin STX 1agt 1chl 1gps 1ica 1pnh 1sis 2crd 1mtx (1cmr) 1sco

Subtilisin SUB
2pkc 2tece 2sece

2sbt 1mpt

Thioredoxin THX
(2tir) 3gsta 1glpa 1hna 1thx

3trx (1agsa) 1gne 1gsq 1tof 1mek

Snake toxin TOX
3ebx 1fas 1ntn

1abta 1cdta 1cod 1cre 1cre 1cvo 1ctx 1cxn 1drs 1kbaa 1nea 1ntx 1tfs 1lsi

Triose phosphate
isomerase

TPI 2ypia 3tima 1htia (1tmha) 1btma

Viral coat
protein

VCP 2plv2 2r062 2rhn2 1bbt2 1mec2 1tmf2 1cov2

PDB structures in pdb.nr80. Each family is divided into two groups of structures. High-resolution (<2.2 AÊ ) structures are shown
above the line; lower-resolution structures are shown below the line. Structures from sequences designated as mutant in the PDB are
enclosed in parentheses.
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