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The FASTA package of sequence comparison programs has been modi-
®ed to provide accurate statistical estimates for local sequence similarity
scores with gaps. These estimates are derived using the extreme value
distribution from the mean and variance of the local similarity scores of
unrelated sequences after the scores have been corrected for the expected
effect of library sequence length. This approach allows accurate estimates
to be calculated for both FASTA and Smith-Waterman similarity scores
for protein/protein, DNA/DNA, and protein/translated-DNA compari-
sons. The accuracy of the statistical estimates is summarized for 54 pro-
tein families using FASTA and Smith-Waterman scores. Probability
estimates calculated from the distribution of similarity scores are gener-
ally conservative, as are probabilities calculated using the Altschul-Gish
l, K, and H parameters. The performance of several alternative methods
for correcting similarity scores for library-sequence length was evaluated
using 54 protein superfamilies from the PIR39 database and 110 protein
families from the Prosite/SwissProt rel. 34 database. Both regression-
scaled and Altschul-Gish scaled scores perform signi®cantly better than
unscaled Smith-Waterman or FASTA similarity scores. When the Prosite/
SwissProt test set is used, regression-scaled scores perform slightly better;
when the PIR database is used, Altschul-Gish scaled scores perform best.
Thus, length-corrected similarity scores improve the sensitivity of data-
base searches. Statistical parameters that are derived from the distri-
bution of similarity scores from the thousands of unrelated sequences
typically encountered in a database search provide accurate estimates of
statistical signi®cance that can be used to infer sequence homology.
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Introduction

Sequence similarity searches today are the most
effective method for exploiting the information in
the rapidly growing DNA and protein sequence
databases. One of the most dramatic improvements
in similarity searching was the introduction of
accurate statistical estimates for similarity searches
for alignments without gaps in the BLAST
sequence comparison package (Altschul et al.,
1990). Accurate statistical estimates make it poss-
ible to identify automatically sequences that are
likely to be homologous (i.e. that share statistically
signi®cant similarity because of descent from a
common ancestor). In general, if statistically signi®-
cant similarity is found between two sequences
and the similarity does not simply re¯ect a region

with unusual amino acid composition, the
sequences are likely to be homologous.

The BLAST package of sequence comparison
programs (Altschul et al., 1990, 1994) provides the
most widely used similarity searching programs,
in part because of its accurate statistical estimates.
BLAST uses two parameters, K and l, to estimate
the statistical signi®cance of a high scoring align-
ment using the formula (Karlin & Altschul, 1990;
Altschul et al., 1994; Altschul & Gish, 1996):

P�S > x� � 1ÿ exp�ÿKmneÿlx� �1�
where x is the similarity score, and m and n are the
lengths of the two sequences being compared.
Unfortunately, the underlying statistical model
used by BLAST for high scoring segment pairs is
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limited to alignment without gaps (Karlin &
Altschul, 1990), although scores from several
ungapped alignments can be evaluated as well
(Karlin & Altschul, 1993). Because sequence align-
ments between distantly related proteins typically
require gaps, and similarity searching with the
Smith-Waterman algorithm and the FASTA pro-
gram (with gaps) can perform better than BLAST
on divergent protein families (Pearson, 1995), we
sought a general strategy that would provide accu-
rate statistical estimates for alignments with gaps
that would work not only for Smith-Waterman
scores but also for FASTA protein-protein, DNA-
DNA comparisons, and for comparisons between
protein sequences and translated DNA (FASTX,
TFASTX, TFASTA).

Here, we evaluate several approaches for calcu-
lating the ``location'' (K) and ``scale'' (l) parameters
from the distribution of similarity scores from
unrelated sequences that are calculated during a
sequence database search. We show that statistical
estimates for similarity scores that have been
scaled to correct for the length-dependence of local
similarity scores are very accurate, and that the
empirical approach described here provides an
internal calibration of the accuracy of the estimates.
In addition, we show that length-corrected simi-
larity scores are more effective than raw scores at
identifying distantly related members of protein
families. These estimation methods have been
incorporated into versions 2.0 and 3.0 of the
FASTA package of sequence comparison pro-
grams.

Results

Accurate statistical estimates

This paper describes a general method for deter-
mining the statistical signi®cance of a local simi-
larity score, based on the distribution of similarity
scores obtained from a sequence database search.
Current protein and DNA sequence databases con-
tain many tens of thousands of sequences, almost
all of which are unrelated to an individual query
sequence (even the largest protein families com-
prise less than 5% of a comprehensive protein
database like SwissProt or PIR). Thus, every data-
base search provides tens of thousands of scores
from unrelated, effectively random, protein and
DNA sequences. For local similarity scores, these
``random'' sequence scores are expected to follow
the extreme-value distribution (Mott, 1992;
Altschul & Gish, 1996) with location and scale
parameters{ that re¯ect the lengths and compo-
sitions of the query and library sequences and the

scoring matrix and gap penalties used. In this sec-
tion, we show that the statistical signi®cance
values produced by several estimate procedures
are accurate; thus, they can be used with con®-
dence to infer homology from signi®cant sequence
similarity.

To calculate the statistical signi®cance of a simi-
larity score from the distribution of unrelated-
sequence scores, the location and score parameters
must be estimated. Previous workers have
described estimation procedures based on searches
with random sequences or pruned searches with
``real'' sequences (Mott, 1992), successive local sub-
alignments (Waterman & Vingron, 1994), or by
simulations with random sequences (Altschul &
Gish, 1996). We prefer to estimate the parameters
directly from the distribution of actual unrelated
sequence similarity scores so that any local align-
ment procedure, including the heuristic methods
used by FASTA, can be used. However, unrelated
sequence similarity scores are often ``contami-
nated'' with high scores from unrelated sequences;
these scores must be removed for accurate esti-
mation. Several methods for estimating these par-
ameters are outlined in Methods.

The distributions of Smith-Waterman, FASTA
protein, FASTA DNA, and FASTX similarity scores
are accurately described by the extreme-value dis-
tribution after parameter estimation from unre-
lated-sequence similarity scores (Figure 1). For
SSEARCH, the statistical parameters are estimated
from the Smith-Waterman local similarity scores.
For the FASTA and FASTX programs, the location
and scale parameters are estimated from the distri-
bution of optimized similarity scores (opt scores in
Table 1). FASTA and FASTX optimized scores
result from a Smith-Waterman alignment in a band
of 16 or 32 residues centered on the highest scoring
initial region found in the FASTA/X scanning
heuristic (Pearson, 1990).

We are most concerned with similarity scores in
the upper tail of the distribution (Figure 1, insets),
since the highest similarity scores are used to infer
homology. There is excellent agreement between
the observed and expected distribution of simi-
larity scores not only for protein sequence compari-
son using the rigorous Smith-Waterman algorithm
(Smith & Waterman, 1981; SSEARCH, Figure 1A),
but also for similarity scores calculated by the
heuristic FASTA procedure, for either protein-pro-
tein or DNA-DNA comparisons (Figure 1B and C).
The FASTX program compares a DNA query
sequence (such as an Expressed Sequence Tag
cDNA sequence) to a protein sequence library by
translating the DNA sequence in three frames and
calculating the best alignment between the trans-
lated sequence and a protein sequence, allowing
frameshifts (Zhang et al., 1997); the frequencies of
actual FASTX similarity scores also agree closely
with the expected frequencies of scores from the
extreme-value distribution.

Because protein and DNA sequence identi®-
cation rely on accurate statistics for the highest

{ For the normal distribution, the location parameter
is the mean m and the scale parameter is the standard
deviation s. For the extreme-value distribution,
exp(ÿeÿ(x ÿ a)/b), the location parameter a and scale
parameter b are related to m and s as: m � a ÿ bÿ0(1) and
s2 � b2p2/6 (Evans et al., 1993).
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scoring sequences from a database, the expectation
(E()-values) of the score of the highest scoring
unrelated sequence, the number of times the score
is expected by chance, is more important than the
overall distribution of similarity scores. The E()-
value for obtaining a similarity score S > x in a
sequence database search is E(S > x) � P(S > x)N,
where P(S > x) is the probability of obtaining a
score S > x in a single comparison (which can be
estimated from the extreme-value distribution),
and N is the number of tests that have been per-
formed. For similarity searches against a protein
sequence database, a similarity score is calculated
(a test is performed) for each sequence in the data-
base, so N is the number of entries in the database,
Ideally, the highest scoring unrelated sequence
should have an expectation value of �1.0; an unre-
lated (random) sequence should have an expec-
tation value of 0.02 about 2% of the time. The
BLAST suite of programs also calculates an expec-
tation, but typically reports the probability of
obtaining the score in a database search: P(S > x|N
comparisons) � 1 ÿ eÿE(S > x). For E() or P()-values
<0.05, the two values are approximately equal, but
BLAST P()-values range from 0...1, while FASTA

E()-values range from 0 to the number of sequences
in the database.

Table 1 shows the highest scoring related and
unrelated sequences found in each of the searches
displayed in Figure 1. Because the glutathione
transferase family used for these searches is large
and diverse, it is relatively straightforward to
identify the highest-scoring unrelated sequence by
doing additional searches with each candidate
unrelated sequence. For these examples, the expec-
tation values for the highest scoring unrelated
sequences ranged from 0.21 (FASTA DNA) to
2.4 (FASTX). A more comprehensive summary
of expectation values for Smith-Waterman
(SSEARCH) and FASTA scores is shown in
Figures 2 and 3.

The excellent agreement between observed and
expected distributions of similarity scores relies on
the local character of the sequence alignment.
Figure 1A and C also include examples where low
gap penalties were used. When gap penalties are
too low, alignments shift from local to global and
the extreme value statistics no longer apply
(Waterman et al., 1987; Mott, 1992; Altschul &
Gish, 1996). In contrast, very high gap penalties

Figure 1. Distribution of sequence
similarity z-scores. The number of
sequences obtaining a similarity
score (z-score), calculated using the
regress1 method, in x-axis bins of
two z-score units (A, B and C) or
four units (C) are shown. Symbols
show the observed number of
sequences; the continuous line indi-
cates the expected distribution of z-
scores for an extreme value distri-
bution. (z-scores are scaled to have a
mean of 50 and a standard deviation
of 10.) A, Smith-Waterman algor-
ithm (SSEARCH). Comparison of
gtm1_mouse with SwissProt
(rel.34) using the BLOSUM50
(Heniknoff & Henikoff, 1992) scoring
matrix, ÿ12 for the ®rst residue in
a gap and ÿ2 for each additional
residue (ÿ12/ÿ1,&) or ÿ8/ÿ1
(*). For the search with gap penal-
ties of ÿ12/2, the Kolmogorov-
Smirnov (KS) statistic for the ®t of
the observed to expected distri-
bution of scores was 0.0049
(N � 29); for the ÿ8/ÿ1 gap-pen-
alty search KS � 0.062 (N � 29).
B, Comparison of gtm1_mouse
with SwissProt using FASTA,
ktup � 2, BLOSUM50 matrix, ÿ12/
ÿ2 gap-penalties (&, KS � 0.017,

N � 29). C, DNA sequence comparison of the MUSGLUTA cDNA sequence with the primate, rodent, and mamma-
lian divisions of Genbank (rel. 102), ktup � 4, �5 for a match, ÿ4 for a mismatch, ÿ16/ÿ4 gap-penalties (&,
KS � 0.023, N � 29) or ÿ12/ÿ2 gap-penalties (*, KS � 0.050, N � 29). D, Comparison of the MUSGLUTA cDNA
sequence with SwissProt using the FASTX program, which translates the DNA query sequence and calculates the
best alignment between the three-frame translation and each SwissProt protein sequence, allowing frameshifts. The
BLOSUM50 scoring matrix, gap-penalties of ÿ15/ÿ3, and a frameshift penalty of ÿ30, was used (&, KS � 0.010,
N � 29).
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Table 1. High-scoring related and unrelated sequences

Smith-Waterman (SSEARCH)

The best scores are: len opt z-sc E(58,741)

GTM1 MOUSE Glutathione S-transferase GT8.7 (mu) 217 1490 1929.5 10ÿ100

GTP HUMAN Glutathione S-transferase Pi (pi) 209 356 457.6 10ÿ18

GTA1 RAT Glutathione S-transferase Ya (alpha) 221 238 303.8 10ÿ10

SC1 OCTDO S-Crystallin 1 (OL1). 215 224 285.9 10ÿ9

GTS2 DROME Glutathione S-transferase 2 247 164 206.7 10ÿ4

GTH3 ARATH Glutathione S-transferase ERD13 215 142 179.5 0.002
GTT2 HUMAN Glutathione S-transferase T2 (theta) 2 243 132 165.3 0.012
GTT4 MUSDO Glutathione S-transferase 4 210 125 157.6 0.033
GTH4 MAIZE Glutathione S-transferase IV 222 125 157.1 0.033
GTT1 MUSDO Glutathione S-transferase 1 208 122 153.8 0.054
GTT2 RAT Glutathione S-transferase YRS (theta) 243 123 153.6 0.056
GTH3 MAIZE Glutathione S-transferase III 221 115 144.1 0.019
*YJY1 YEAST Hypothetical 30.5 kDa protein in SPC1-I 261 110 136.1 0.53
DCMA METS1 Dichloromethane dehalogenase 266 103 127.9 1.3
GTT1 DROME Glutathione S-transferase 1 209 100 126.3 1.6
GTH1 WHEAT Glutathione S-transferase 1 229 98 121.7 3.3
LGUL SOYBN Lactoylglutathione lyase 219 97 120.9 3.7
*SLT HAEIN Soluble lytic murein transglycosylase 593 103 119.2 4.6
*MOD5 YEAST tRNA isopentenyltransferase 427 100 118.4 5.1
*SPCB HUMAN Spectrin beta chain 2137 108 113.4 9.7

FASTA, ktup � 2

The best scores are: len opt z-sc E(58,742)

GTM1 MOUSE Glutathione S-transferase GT8.7 (mu) 217 1490 1747.0 10ÿ90

GTP HUMAN Glutathione S-transferase Pi (pi) 209 356 426.2 10ÿ16

GTP CRILO Glutathione S-transferase Pi (pi) 209 352 421.6 10ÿ16

GTA1 RAT Glutathione S-transferase Ya (alpha) 221 237 287.2 10ÿ9

GTA3 RAT Glutathione S-transferase 8 222 179 219.6 10ÿ5

GTS2 DROME Glutathione S-transferase 2 247 161 197.9 0.00019
GTA2 CHICK Glutathione S-transferase 193 144 179.8 0.0019
SC1 OCTDO S-Crystallin 1 (OL1). 215 132 165.1 0.013
GTT4 MUSDO Glutathione S-transferase 4 210 125 157.1 0.036
GTH3 ARATH Glutathione S-transferase ERD13 215 112 141.8 0.25
*YJY1 YEAST Hypothetical 30.5 kDa protein in SPC1-I 261 110 138.1 0.41
GTH4 MAIZE Glutathione S-transferase IV 222 103 131.1 1.0
GTT1 DROME Glutathione S-transferase 1 209 100 128.0 1.5
GTT2 RAT Glutathione S-transferase YRS (theta) 243 97 123.9 2.2
GTT2 HUMAN Glutathione S-transferase T2 (theta) 243 97 123.5 2.7
*SPCB HUMAN Spectrin beta chain 2137 108 121.4 3.5
*YLB5 CAEEL Hypothetical 146.8 kDa protein C 1281 103 119.1 4.7
*DAPF YERPE Diaminopimelate epimerase 198 90 116.7 6.3
*YHC9 YEAST Hypothetical 77.8 kDa protein 679 96 115.3 7.6
GT ECOLI Glutathione S-transferase 201 88 114.3 8.6

FASTX ktup � 2

The best scores are: len opt z-sc E(58,760)

GTM1 MOUSE Glutathione S-transferase GT8.7 (mu) 217 1490 1860.6 0
GTP HUMAN Glutathione S-transferase Pi (pi) 209 337 422.0 10ÿ16

GTP CRILO Glutathione S-transferase Pi (pi) 209 333 417.0 10ÿ16

GTA1 RAT Glutathione S-transferase Ya (alpha) 221 208 260.2 10ÿ7

GTA3 RAT Glutathione S-transferase 8 222 149 186.5 0.00082
GTA1 CAEEL Probable glutathione S-transferase 207 125 157.5 0.030
SC1 OCTDO S-Crystallin 1 (OL1). 215 120 150.5 0.083
GTH3 ARATH Glutathione S-transferase ERD13 215 107 134.3 0.67
GTT1 MUSDO Glutathione S-transferase 1 (theta) 208 101 127.0 1.7
SC3 OCTDO S-Crystallin 3 (OL3). 215 99 124.3 2.4
*RPB1 CRIGR DNA-directed RNA polymerase II 467 103 124.2 2.4
*CA19 RAT Collagen alpha 1 (IX) chain 325 100 122.9 2.9
*TGFB HUMAN Latent TGF-beta binding protein 1394 107 122.1 3.2
GTT2 HUMAN Glutathione S-transferase (theta) 243 97 121.0 3.7
GTT2 RAT Glutathione S-transferase YRS (theta) 243 97 121.0 3.7
GTH5 ARATH Glutathione S-transferase PM239 218 96 120.5 3.9
*PRPS MOUSE Proline-rich protein MP-3 296 96 118.5 5.1
*YJ9P YEAST Hypothetical 118.4 kDa protein 1161 103 118.3 5.2

DNA FASTA ktup � 4

The best scores are: len opt z-sc E(122,490)

MUSGLUTA Mouse GST1-1 mRNA (mu) 1287 6435 5672.7 0
RATGSTY Rat GST Yb (mu) 6294 372 307.9 10ÿ10

HSGSTM1B Homo sapiens GSTM1b (mu) 2667 358 301.1 10ÿ10

MMGSTM3 Mouse GSTM3 gene (mu) 422 331 289.1 10ÿ8
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simply produce fewer alignments with gaps and
move the algorithm towards the BLAST HSP
model, where the extreme value distribution was
®rst shown to apply (Karlin & Altschul, 1990;
Altschul & Gish, 1996). While high gap-penalties
do not compromise the statistical model, they can
reduce the effectiveness of the search Pearson,
1995).

The agreement between observed and expected
numbers of sequences decreases when low gap
penalties were used. In Figure 1A, there is an
excess of sequences with scores from 50 to 70; in
Figure 1C there are too many observed sequences
with scores from 80 to 100. The effect on the expec-
tation value for both distantly related and highest-
scoring unrelated sequences can be dramatic. For
the Smith-Waterman (SSEARCH) protein sequence
comparison, reducing the gap penalty to ÿ8/ ÿ 1
raised the expectation value for the highest-scoring
unrelated sequence from 0.4 (YJY1_YEAST,
Table 1) to 81 (ABF2_YEAST, Table 2). Like-

wise, expectation values for related sequences
increased several orders of magnitude, so that
plant enzymes with expectation values from 0.002
to 0.19 using ``reasonable'' gap penalties increased
to 6.8 to 16 when the gap penalties were reduced.
For this protein sequence comparison, improper
gap penalties increased the raw Smith-Waterman
similarity score but decreased the signi®cance of
the match.

Low gap penalties can also produce erroneously
low estimates of statistical signi®cance. When gap
penalties for the glutathione transferase cDNA
database search are decreased from ÿ16/ÿ4 to
ÿ12/ÿ2, the expectation value for the highest scor-
ing unrelated sequence dropped from 0.21 to 0.025,
thus indicating statistically signi®cant similarity at
the <0.05 criterion. As before, the expectation
values for all the divergent related sequences
increased substantially. With appropriate ``local''
gap penalties, DNA sequence comparison can
detect signi®cant similarities between the class-mu

Table 1ÐContinued

The best scores are: len opt z-sc E(122,490)

HSGSTMU3 Human GSTmu3 gene (mu) 1820 322 271.8 10ÿ8

HSGSTPI Human mRNA for GST-pi mRNA (pi) 714 237 202.6 0.00025
RRGTS8 R.rattus mRNA for GST8 (alpha) 893 182 152.7 0.12
*BTRNAXOR Bos taurus xanthine oxidoreductase 4719 175 135.8 0.21
*HUMKAL2 Human glandular kallikrein gene 6139 170 129.7 0.35
*HUMTROPI01 Human troponin I TNNI1 gene 1475 170 132.4 0.54
RNGSTYC2F Rat GST Yc2 (alpha) 1129 170 140.6 0.47
MUSGSTYC Mouse GST Yc (alpha) 950 168 140.0 0.60
*MUSTHYGP Mouse Thy-1.2 glycoprotein 5572 163 124.1 0.78
*HS186D3R Homo sapiens CpG island DNA 334 163 142.3 1.3

High scoring sequences from the searches shown in Figure 1. Only selected related sequences are shown; all the highest-scoring
unrelated sequences are shown. High scoring unrelated sequences are highlighted with an asterisk (*) and italics. The sequence
length (len) and several similarity measures are shown. The opt column is the uncorrected Smith-Waterman score for SSEARCH
searches, and the ``optimized'' FASTA score (see the text) for FASTA searches. The z-sc column reports the length-corrected Z-score
for the alignment. The E(N) value reports the number of times the score should be obtained by chance for a search against a data-
base of size N. For searches of the SwissProt database, N � 58,750; N varies slightly because of the different numbers of excluded
sequences with the different searches.

Figure 2. Distribution of P()-
values, Smith-Waterman. Ran-
domly shuf¯ed (A) or unshuf¯ed
(B) sequences from 54 PIR39 super-
families were used to search the
PIR39b database. Expectation
values for the highest scoring
sequence (A) or the highest scoring
unrelated sequence (B) were con-
verted to probabilities using the
Poisson formula: P() � 1 ÿ eÿE. The
probabilities (predicted frequency)
were sorted from lowest to highest
and plotted as a fraction of the
total number of searches (54,
observed frequency). Predicted
frequencies (probabilities) for the
highest unrelated sequence score
expectation values calculated using
regress1 (ÿ12/ÿ2, &; ÿ14/ÿ2,
&), regress2 (ÿ12/ÿ2, ~; ÿ14/ÿ2
~), or Altschul-Gish (*, *)
parameters.
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query sequence and a class-pi mRNA (HSGSTPI,
E() < 0.00025). With the lower gap-penalties, the
HSGSTPI sequence has a non-signi®cant value
(E() < 0.51). thus, increasing the gap penalty
to ensure that the highest-scoring unrelated
sequence similarity score is �1.0 can improve
dramatically the detection of distantly related
family members.

To con®rm that the statistical estimates gener-
ated by SSEARCH and FASTA are accurate, we
performed database searches with sequences from

54 protein families against an annotated protein
sequence database (see Methods). Two groups of
sequences were used, 54 random sequences
derived by shuf¯ing a sequence from each of the
54 families or the 54 original unshuf¯ed sequences.
For the random sequences, we determined the
expectation of the highest-scoring library sequence
(since the query sequence is random, this is the
highest scoring unrelated sequence and the score
should have an expectation value �1). For the
unshuf¯ed sequences, we determined the expec-

Figure 3. Distribution of P()-
values. The procedure described for
Figure 2 was performed with
scores calculated with FASTA,
ktup � 2 (®lled symbols) and
ktup � 1 (open symbols) with
either regress1 (squares) or
Altschul-Gish (circles) parameters.

Table 2. Low gap-penalties reduce sensitivity

SSEARCH, ÿ8/ ÿ 1

The best scores are: len opt z-sc E(58,661)

GTM1 MOUSE Glutathione S-transferase GT8.6 (mu) 217 1490 832.0 10ÿ39

GTP HUMAN Glutathione S-transferase Pi (pi) 209 378 212.8 10ÿ5

GTA1 RAT Glutathione S-transferase Ya (alpha) 221 304 170.6 0.0063
SC1 OCTDO S-Crystallin (OL1). 215 279 157.1 0.036
GTH3 ARATH Glutathione S-transferase ERD13 215 190 115.2 6.8
GTH4 MAIZE Glutathione S-transferase IV 222 205 115.3 7.6
DCMA METS1 Dichloromethane dehalogenase 266 200 110.3 14
GTH3 MAIZE Glutathione S-transferase III 221 194 109.3 16
GTT2 HUMAN Glutathione S-transferase T2 (theta) 2 243 189 104.9 29
GTT1 MUSDO Glutathione S-transferase 1 208 183 104.2 32
GTH1 WHEAT Glutathione S-transferase 1 229 185 103.6 34
GTT2 RAT Glutathione S-transferase YRS (theta) 243 177 98.2 68
*ABF2 YEAST ARS-binding factor 2 precursor. 183 166 96.9 81
LGUL SOYBN Lacoylglutathione lyase 219 171 96.6 84

DNA FASTA ktup � 4, ÿ12/ ÿ 2

The best scores are: len opt z-sc E(123,689)

MUSGLUTA Mouse GST1-1 mRNA (mu) 1287 6435 2514.3 10ÿ133

HUMGSTM3A Human GSTM3 cDNA (mu) 1266 1608 641.2 10ÿ28

HSGSTMB1B Homo sapiens GSTM1b gene (mu) 2667 462 191.8 0.00028
RATGSTY Rat GSTYb (mu) 6294 386 157.0 0.01
*MMU66249 Mouse cut alternate splice (CASP) 1757 373 159.8 0.025
HSGSTMU3 Human GSTmu3 gene (mu) 1820 358 153.8 0.053
MMGSTM3 Mouse HSTM3 gene (mu) 422 354 161.3 0.087
*MMSPARCR Mouse mRNA for cysteine rich glycoprot. 2079 333 143.3 0.18
RATGSTPPS Rat GST-P (pi) pseudogene 1213 323 142.7 0.33
HSGSTPI Human class Pi GST (pi) 714 317 143.4 0.51
HSGSTMU2 Human GSTmu2 gene (mu) 1222 309 137.3 0.66

Selected high scoring related, and highest scoring unrelated sequences from the searches with low gap penalties from Figure 1A and
C. High scoring unrelated sequences are highlighted with an asterisk (*) and italics.
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tation value of the similarity score of the highest-
scoring unrelated sequence.

In addition to examining the expectation values
calculated by the regress1 regression strategy
described in Methods, we examined expectation
values based on the l, K, and H parameters
published by Altschul & Gish (1996) and values
based on an alternative regression strategy
(regress2, see Methods). The results for all 54
sequences were combined by plotting the cumulat-
ive fraction (observed frequency) of the 54
sequences versus the indicated probability (pre-
dicted frequency). The indicated probability (P()-
value) was calculated from the expectation value
(E) using the formula P(E)-1 ÿ eÿE; this is the P()-
value reported by the BLAST programs. With this
transformation, a plot of the cumulative fraction of
query sequences versus the P()-value of the highest
scoring sequence should have a slope of 1.0, which
is indicated as a diagonal line on the plot. Thus,
expectation values with a P()-value < 0.02 would
occur about 2% of the time, P() < 0.1 about 10% of
the time, etc. (Figure 2). If the calculated expec-
tation values (and their associated Poisson prob-
abilities) are conservative, then the points will lie
above and to the left of the diagonal. Points below
the diagonal indicate that the expectation values
are too low (and thus incorrectly imply statistical
signi®cance, Figures 2 and 3).

Figure 2 shows that the two ®tting
strategies (regress1 and regress2) and Altschul-
Gish parameters produce accurate and conserva-
tive estimates for the expectation value for the
highest scoring library sequence when randomly
shuf¯ed protein sequences are used. When
unshuf¯ed sequences are used and the scores of
the highest scoring unrelated sequences are exam-
ined, the estimated regress1 and regress2 values
are more conservative; with shuf¯ed sequences,
Altschul-Gish estimates are slightly more conserva-
tive. Thus, the regress1 and regress2 statistical
estimates are at least as accurate as those calcu-
lated using the Altschul-Gish parameters for pro-
tein sequences when the Smith-Waterman
algorithm is used.

The estimation strategies are quite ¯exible; they
can be used for similarity scores calculated by
FASTA for protein or DNA searches, and for trans-
lated-DNA protein sequence comparison. Figure 3
shows that the expectation values calculated for
FASTA protein sequences, with either random (A)
or unshuf¯ed (B) sequences, are quite accurate,
both when searches are performed with the faster
ktup � 2 or the more sensitive ktup � 1 search strat-
egy. As with the Smith-Waterman searches
(Figure 2), expectation values from searches per-
formed with real unshuf¯ed sequences are some-
what lower than those obtained for random
sequences, but the estimates for both random and

real sequences rarely overestimate the signi®cance
of a similarity more than twofold.

Improved search performance

The best estimation strategy should not only
provide accurate estimates, it should also improve
similarity search performance by correcting for the
expected increase in unrelated sequence similarity
score with length. In an earlier paper (Pearson,
1995), we showed that scaling similarity scores by
log(nq/log(nl), where nl is the length of the library
sequence and nq is the length of the query
sequence, signi®cantly improved both Smith-
Waterman and FASTA similarity searches, allow-
ing more distantly related sequences to be ident-
i®ed. The extreme value distribution parameters
calculated by regress1, regress2 ®tting and the
Altschul-Gish parameters can also be used to cor-
rect raw similarity scores for the expected effect of
library sequence length{.

We compared the performance of similarity
searches performed with ®ve different length-scal-
ing procedures (as well as unscaled scores) using
110 different PROSITE protein families identi®ed
as challenging by Henikoff & Henikoff (1993)
(Figure 4). This set of protein families is twice as
large as the earlier PIR39 based group; in addition,
it includes more families containing modular pro-
tein domains. To evaluate the relative performance
of a pair of length-scaling strategies, we examined
both the equivalence number criterion used earlier
(Pearson, 1995) and also a second measure of
search quality, the number of unrelated sequences
found plus related sequences missed at the
E() < 0.02 signi®cance level. The ``equivalence num-
ber'' is the number of related sequences that score
at or below a similarity score (z-score) that bal-
ances the number of related sequences at or below
the value and the number of unrelated sequences
with scores above the value; i.e. the score where
the number of false-positives equals the number of
false-negatives. As before, we calculated the
z-value for the difference in performance between
the best length-scaling method and the alterna-
tives; differences in performance are signi®cant at
the 0.05 level if z > 2.

When the equivalence number criterion is
used; excellent performance is seen with the
regress1 and regress2 scaling strategies and gap
penalties of ÿ14 for the ®rst residue in a gap and
ÿ2 for each additional residue in the gap. Searches
with regress1 scaling perform signi®cantly better
than comparison with unscaled-scores. With this
database, the regress1 procedure also performs
better than the older log(nq)/log(nl)-scaling (log())
that was the best performer in our earlier study
(the difference is signi®cant when the ÿ14/ÿ2 gap
penalty is used). We attribute this difference to the
presence of many more domain-shuf¯ed sequences
in the Prosite/SwissProt based test set and to
improvements in the regression scaling strategy.
(The method used in our earlier paper is shown as

{ The log(nq)/log(nl) scaling, though effective in
practice, does not have any theoretical basis.
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regress3.) The difference in performance for the
three different regression scaling strategies are not
signi®cant. On this dataset, searches with similarity
scores scaled using Altschul-Gish parameters (gap
penalty ÿ14/ ÿ 2) are slightly less effective than
regression scaling, but the difference is not statisti-
cally signi®cant.

The equivalence number criterion balances the
number of false-positive and false-negative
results reported in a search, regardless of
whether the ``related'' sequences have statisti-
cally signi®cant similarity scores. For automated
sequence classi®cation, a more useful criterion is
the number of related sequences missed (false
negatives) plus the number of unrelated
sequences ``found'' (false positives) at a speci-
®ed con®dence limit. e.g. E() < 0.02. Using this
criterion, regress1 with gap penalties of ÿ14/
ÿ2, or regress3 and Altschul-Gish with penalties
of ÿ12/ÿ2 are the most effective (Figure 4B).
As before, searching with unscaled scores is sig-
ni®cantly less effective.

Figure 5 also compares searches with FASTA in
its most sensitive mode (ktup � 1). When either the

equivalence number or the E() < 0.02 criterion is
used, the Smith-Waterman algorithm always per-
forms signi®cantly better than FASTA with
ktup � 1 (and better than FASTA, ktup � 2, not
shown). Not only does the Smith-Waterman algor-
ithm rank distantly related sequences above high-
scoring unrelated sequences, thus improving the
equivalent number, Smith-Waterman also identi®es
additional distantly related sequences at the
E() < 0.02 criterion.

We also examined the relative performance of
the different scaling methods on the 54 protein
families from the revised PIR39 dataset (Figure 6).
On these protein families, the Altschul-Gish par-
ameters provided the most effective searching
when the equivalence number criterion was used;
regress1 scaling did not perform as well, but the
difference was not statistically signi®cant. In con-
trast to our earlier study (Pearson, 1995), log(nl)
scaling is not signi®cantly better than regress1
with ÿ14/ÿ2 gap penalties. This difference may
re¯ect the more careful selection of the query
sequences in the current study; we expect that
log()-scaling performs better on this dataset

Figure 4. Search performance,
Smith-Waterman. The relative per-
formance of different length-scaling
strategies with searches of 110
query sequences from the Prosite/
SwissProt challenging families
against the SwissProt rel. 34 data-
base is shown. In each panel, the
top half reports searches with a
ÿ12/ÿ2 gap penalty; the bottom
half ÿ14/ÿ2. All comparisons
are against regress1, ÿ14/ÿ2.
A, Performance using the equival-
ence number criterion. The number
of sequences performing better or
worse (left panel) and the z-value
of the difference (right panel;
Pearson, 1995) is shown. z-value
differences of 2.0 or greater are
statistically signi®cant at the
P() < 0.05 level. B, Performance
evaluated using the E() < 0.02
criterion.
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because most of the query sequences share global
similarity with their homologues in the PIR39
protein database.

Discussion

We have examined several strategies for correct-
ing the length-dependence of local protein
sequence similarity scores. The default method
used by programs in versions 2.0 and 3.0 of the
FASTA package (Pearson, 1996), regress1, pro-
duces accurate statistical estimates and signi®-
cantly improves search performance over unscaled
similarity scores. In addition, Altschul-Gish scaling
and regress2 and regress3 scaling are available in
current versions of the programs; however,
Altschul-Gish scaling is available only for protein
sequence comparisons.

The accurate and conservative statistical esti-
mates shown in Figures 2 and 3 are due in part to

our selection of the 54 query sequence families.
Query sequences with highly biased amino acid
compositions, such as histones, keratins, metal-
lothioneins, produce ``signi®cant'' (E()50.01)
matches with unrelated library sequences because
of sequence bias alone. This problem has been well
documented (Wootton & Federhen, 1993; Altschul
et al., 1994) and tools are available to identify and
remove highly biased regions in protein and DNA
sequences (Wootton & Federhen, 1993).

Our results suggest that, once biased compo-
sition regions have been removed, the statistical
estimates can be relied upon to re¯ect accurately
the frequency of a similarity score occuring by
chance. Investigators often wonder: what P()-value
or E()-value should be used to infer homology?
The answer to this question depends both on the
number of searches that are being performed and
the investigator's concern about inferring hom-
ology erroneously. If one search is performed each
week on a newly sequenced protein, using the cri-
terion P() � E() < 0.02 for inferring homology, then,
on average, one sequence in 50, or one per year,
will have a homology assigned incorrectly. These
``false positive'' errors can be reduced by using a
more strict criterion for inferring homology (e.g.
P() � E() < 0.001), but this will cause additional dis-
tant homologues to be missed. For example, when
the E() < 0.02 criterion is used with the 110 Pro-
site/SwissProt query sequences, 4674 related

Figure 5. Search performance, Smith-Waterman and
FASTA. The plot shows the difference in performance
between reference Smith-Waterman searches using gap
penalties of ÿ14/ÿ2 and regress1 statistical estimates.
A, Equivalence number criterion; B, E() < 0.02 criterion,
and the gap-penalties and normalization strategy named
across the top of the panel. When reference search per-
forms better, the z-values are negative and indicate the
signi®cance of the difference in performance. Searches
were performed using Prosite/SwissProt families and
SwissProt rel. 34. Searches on the left half of each panel
used gap penalties of ÿ12/ÿ2; searches on the right
half used ÿ14/ÿ2. Differences with z-values <ÿ2.0
or >2.0 are statistically signi®cant.

Figure 6. Search performance, PIR39. Search perform-
ance using two sequences from each of 54 PIR39b
families is shown. Panels are labeled as for Figure 5 and
all comparisons are with respect to reference Smith-
Waterman searches (regress1, ÿ14/ÿ2). A, Comparison
using the equivalence number. B, Comparison using the
E() < 0.02 criterion.
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sequences are missed in the 110 searches; when the
stricter E() < 0.001 criterion is used, an additional
732 sequences are missed.

Estimation of statistical signi®cance of local simi-
larity scores from the empirical distribution of
similarity scores was ®rst proposed by Collins et al.
(1988). These authors recognized that the number
of high-scoring sequences declined exponentially
and suggested ®tting a line to all but the highest
scoring 3% of similarity scores. They did not cor-
rect for the effect of library sequence length on
unrelated sequence similarity score; without length
correction, search performance is signi®cantly
worse. In addition, they did not estimate a scale
parameter, making it dif®cult to estimate accu-
rately the statistical signi®cance of very high scor-
ing sequences.

Mott (1992) used maximum likelihood esti-
mation of the parameters of the extreme value dis-
tribution to evaluate statistical signi®cance. His
approach is similar to the regress2 estimation eval-
uated here, except that maximum likelihood esti-
mation was used instead of linear regression and a
composition parameter (c) as well as library
sequence length (nl) was included in the likelihood
estimation. Calculation of c may provide even
more effective scaling of unrelated similarity scores
with similar compositions, but it is computation-
ally intensive, as c is the positive root of the
equation �u,vpuqve

S(u,v)/c � 1 (Mott, 1992). Since c
depends both on the amino acid composition of
the query sequence pu and each library sequence
qv, it must be recalculated for each sequence com-
parison. Length scaling clearly provides a signi®-
cant improvement in search effectiveness; we plan
to examine the additional bene®t of composition-
scaling in the future.

An alternative strategy for estimating l and K
was described by Waterman & Vingron (1994).
Their approach estimates the statistical parameters
by examining the distribution of sub-optimal align-
ment scores. The approach requires additional
alignments to be calculated, and sequences with
internal duplications can confuse the estimation
procedure if the duplications are not recognized.
Their approach is especially effective in examining
the signi®cance of a single pairwise alignment,
since an arbitrary number of sub-optimal scores
can be generated from a pair of sequences. The
Waterman-Vingron estimate re¯ects the difference
between the optimal alignment score for a
sequence pair and alternative alignment scores for
the same pair of sequences, and thus is similar to
estimates produced by randomly shuf¯ing one of
the sequences and examining the distribution of
scores. The database-based parameters described
here estimate the signi®cance of a similarity in the
context of an entire protein sequence database
search, rather than alternative alignments of two
sequences. Expectation values calculated from
database searches are often quite similar to those
calculated by comparisons to shuf¯ed sequences
(Pearson, 1996).

A strength of our empirical approach is that, at
least in theory, it can produce expectation values
for any local similarity scoring function. For
example, the regress1 statistical estimates are used
in FASTA-SWAP and FASTA-PAT (Lafunga et al.,
1996), which are used to search consensus pattern
databases. However, before relying on the empiri-
cal statistical estimates calculated by FASTA for
unconventional scoring matrices, gap-penalties, or
databases, an analysis similar to those shown in
Figures 2 and 3 should be performed to ensure
that the expectation values of high scoring and
unrelated sequences are accurate.

Length scaling signi®cantly improves similarity
searching performance (Figures 5 and 6; Pearson,
1995) by correcting for the variance of unrelated
sequence similarity scores are likely to improve
search performance as well. Clearly, the effect of
amino acid composition should be considered, as
was done by Mott. In addition, it may be possible
to correct for the effect of hydrophobic patches and
of low complexity regions. Reducing the ``noise''
from high scoring, unrelated sequences may pro-
vide additional improvements in search perform-
ance.

Methods

Sequence libraries and similarity searching

Searches were performed on the annotated por-
tion (PIR1) of the National Biomedical Research
Foundation protein sequence database (Barker et al.
(1990), release 39, 31 December 1993, 4,306,189
amino acid residues in 11,982 sequences), augmen-
ted as described by Pearson (1995). This older
library, and the same set of query sequences, was
used to provide consistency with the earlier work.
The library has been annotated so that every
sequence in the database has been assigned to a
protein superfamily. The earlier experiments com-
pared the performance of two comparison
methods, a reference method and an experimental
method, to reduce the effects of a superfamily mis-
classi®cation. This report focuses on the statistics
of high-scoring unrelated sequences, which
required modi®cations to the original reference
database. Searches were performed with the Smith-
Waterman algorithm and when high-scoring,
apparently unrelated sequences were found,
additional searches were done to con®rm that the
sequences were in fact unrelated. In several cases
(for example, serine proteases, protein kinases,
immunoglobulins, and calcium binding proteins) it
became clear that homologous members of the
same protein family had been assigned different
superfamily numbers. These sequences from the
same superfamily were given the same superfam-
ily number. This database is referred to as PIR39b,
and is available from ftp://ftp.virgi-
nia.edu/pub/fasta.
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Searches were performed with 54 of the 67
query sequences selected from the PIR39 database
listed in Table I of Pearson (1995). Thirteen of the
previous superfamilies were excluded either
because they were homologous with other superfa-
milies (immunoglobulin kappa V-I, kappa C, class-
I HLA) or because they contained regions with
highly biased amino acid composition (HIV gag
polyprotein, HPV L2 and E2 proteins, hepatitis
core antigen, muc, keratin, protamine Y2, histone
H1b, soybean protease inhibitor, and metallothio-
nein). A database of random query sequences with
the same length and amino acid composition as the
54 query PIR39 query sequences was constructed
by uniformly shuf¯ing each of the 54 sequences
using the program randseq. The families with
biased amino acid composition were identi®ed
when searches with the randomly shuf¯ed
sequences produced large numbers of sequences
with high similarity scores.

A second set of query sequences was developed
from the 254 challenging PROSITE (Bairoch, 1991)
pattern families described by Henikoff & Henikoff
(1993). Query sequence families were selected from
the original PROSITE families if the family had 40
or more members in release 34 of SwissProt
(Bairoch & Boechmann, 1991). A copy of SwissProt
was modi®ed to include PROSITE pattern numbers
and additional sequences were labeled with the
numbers if they shared signi®cant similarity
(E() < 0.005) with family members. The resulting
set of Prosite/SwissProt-based query sequences
contains 110 sequences. The PIR39 and Prosite/
SwissProt34 query sets have 20 protein families in
common. Both the revised PIR39 annotated data-
base and the annotated SwissProt 34 database are
available from ftp://ftp.virginia.
edu/pub/fasta.

Similarity searches and scoring matrices

Searches with the FASTA (Pearson & Lipman,
1988; Pearson, 1990) and Smith-Waterman (Smith
& Waterman, 1981; Pearson & Miller, 1992) algor-
ithms were performed in parallel on a DEC alpha
2100 4/275 using a general platform for large-scale
sequence comparison as described by Pearson
(1995). Version 3.0t of the FASTA programs was
used. Protein sequence comparisons were per-
formed with the BLOSUM50 scoring matrix
(Henikoff & Henikoff, 1992) using gap penalties of
ÿ12 or ÿ14 for the ®rst residue in a gap and ÿ2
for each additional residue. DNA sequence com-
parisons used the scoring matrix used by BLASTN,
which scores a match as �5 and a mismatch as ÿ4.
The standard DNA gap penalty was ÿ16 for the
®rst residue in a gap and ÿ4 for additional resi-
dues. Sequence comparisons with FASTX, which
compares a translated DNA sequence to a protein
sequence library, used a gap penalty of ÿ15/ ÿ 3
with a frame-shift penalty of ÿ30.

Statistical estimates for scaled similarity scores

Six methods, Altschul-Gish, log()-scaled,
scaled, unscaled, regress1, regress2, and
regress3, were used to calculate statistical esti-
mates for similarity scores. Altschul-Gish estimates
were calculated using the table of l, K, and H par-
ameters described by Altschul & Gish (1996).
These parameters were than used in the following
equation to calculate the probability of obtaining a
score in a single sequence comparison:

P�S > x� � 1ÿ exp�ÿKm0n0eÿlx� �2�
where m, n, are the length of the query and library
sequences, respectively, and m0 � m ÿ ln(mn)/H
and n0 � n ÿ ln(mn)/H. P()-values from equation
(2) were converted expectation values for obtaining
a score in a database search using equation:

E�S� � P�S�N �3�
where N is the number of sequences in the library
database (the number of times a score was calcu-
lated).

We also evaluated four methods for estimating
statistical signi®cance based on the distribution of
similarity scores that are calculated during a simi-
larity search of a protein or DNA sequence data-
base. The mean m and standard deviation s (which
are related to Kmn and l) can be estimated from
the distribution of similarity scores produced in a
search, but they will vary depending on the scor-
ing matrix and gap penalties (Altschul & Gish,
1996). The estimation is straightforward if all the
sequences are unrelated, as occurs when random
sequences are compared to one another (Altschul
& Gish, 1996), or are used to search a sequence
database (Mott, 1992). However, the estimation is
more dif®cult if a ``real'' protein sequence is used
to calculate the similarity scores because some of
the similarity scores may be very high when hom-
ologous proteins are present. If ``contaminating''
high similarity scores from homologous sequences
are not removed from the estimation, the scale par-
ameter is greatly overestimated, which reduces the
statistical signi®cance of related sequences.

The simplest estimation method (unscaled)
calculates the mean m and variance s2 for all the
unscaled similarity scores and then calculated a z-
value for each score using the formula:
z � (S ÿ m)/s. Similarity scores from related
sequences are then removed by excluding
sequences with z-values >7.0 or <ÿ3.0 and the pro-
cess of estimation and exclusion is repeated as
many as ®ve times.

This z-value was converted to a probability
using the extreme value distribution:

P�Z > z� � 1ÿ exp�ÿeÿzp=
��
6
p ÿÿ0�1�� �4�

from which an expectation was calculated using
equation (3).

Equation (4) can be used to convert any simi-
larity z-value, including length normalized scores
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calculated by the regress1, regress2, regress3, or
log()-scaling methods described below, into the
probability P(z) of obtaining that score by chance
in a single sequence comparison. Once P(z) for one
comparison is known, equation (3) can be used to
estimate the number of times the score would be
expected after the N (typically 10,000 to 250,000)
sequence comparison performed in a database
search.

We also examined the performance of a simple
log-length correction (log()-scaled) described by
Pearson (1995). Similarity scores were multiplied
by the term ln(200)/ln(n), where n was the length
of the library sequence; the mean and variance
were estimated as with the unscaled scores above.
This method has no theoretical basis; it was
included because is had performed well in earlier
tests.

The regression-based methods for estimating the
location and scale parameters use a pruning strat-
egy to remove exceptionally high scores that are
calculated when related sequences are compared.
Because one does not know whether a score is
exceptionally high until the length and scale par-
ameters are estimated, if high scores are included
in this estimation process, the scale parameter will
be too large, with the result that scores from
related sequences will not be excluded. Two prun-
ing strategies were used: regress1 performs two
regressions of the scores with respect to log(nl) and

excludes scores from library sequence length bins
with high variance and then performs a ®nal
regression (Figure 7; regress3 uses the same prun-
ing strategy); regress2 performs the same
regression, but estimates the scale parameter from
the variance of the center 90% of library sequence
length bins ranked by residual variance, repeating
this process up to ®ve times (in practice, it is done
twice, on average). Estimates for regress1 and
regress3 regression-scaled scores are calculated by
the following steps.

(1) The similarity scores are ``binned'' into a his-
togram as a function of ln nl, where nl is the length
of the library sequence: 10ln(10) � 23 bins were
used for each tenfold change in length. The mean m
and standard error of the mean (SEM, s2/

����
N
p

) for
each bin are calculated.

(2) A line is ®t using linear regression weighted
by the SEM through the mean scores (m) of the
bins (Figure 7A and C):

m � r ln nl � c �5�
(3) The z-value:

z � �Sÿ m�=s �6�
of each similarity score is calculated and scores
with z-values <ÿ3.0 or >5.0 are removed from
the bins (&, Figure 7A and C). For the 110
query sequences used to search the SwissProt data-
base with the Smith-Waterman algorithm (gap

Figure 7. Length correction of simi-
larity scores. The effect of the
regress1 strategy on similarity
scores for the gtm1_mouse (A
and C) and opsd_human (B
and D) query sequences. Searches
were performed with a 500
sequence subset of the PIR39b pro-
tein sequence database; scores for
every sequence in the database are
shown. A and B, The length depen-
dence of the raw Smith-Waterman
similarity scores. Large ®lled
squares indicate scores that were
excluded because they had z-scores
above the threshold used to prune
``outliers'' (step 3; seven scores
for gtm1_mouse; seven for
opsd_human). The bracket
indicates the bin that was excluded
because it had residual standard
error higher than three times the
average standard error (step 5; 55
scores in one bin at length 245
to 269 for gtm1_mouse; 59
scores in one bin at 365 to 402
for opsd_human). The ®nal
regression line used to calculate the
expected mean score as a function
of library sequence length is also
shown. C and D, The length depen-
dence and distribution of the
length-corrected z-scores.
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penalty ÿ14/ÿ2), this step removed 109(�10)
(mean(�SEM)) of the 59,020 sequences per query.

(4) The linear regression coef®cients (equation
(5)) are recalculated.

(5) Bins with residual standard error three times
the average residual standard error are removed
from the calculations. For the 110 query sequences
used to search SwissProt, this step removed
0.87(�0.06) bin with 1343(�131) sequences per
query, an average. The bins removed in Figure 7A
and C are indicated with a t.

(6) The linear-regression formula (equation (5)) is
calculated a third time, and the average residual
variance bs2 is calculated.

(7) regress1 z-values are calculated using the
formula:

z�S� � Sÿ r ln nl ÿ c������
s2
p �7�

regress3 (Pearson, 1995) calculates s from a
second regression against lnnl; while regress1
simply uses the average residual variance.

(8) Z-scores (Z) are derived from the z-values (z)
using the formula: Z(z) � 50 � 10z. (As a result of
this scaling, Z-scores have approximately the same
magnitude as raw similarity scores calculated with
the PAM250 or BLOSUM50 matrices.)

As can be seen in Figure 7B and D, the length-
corrected Z-scores have an average 50, indepen-
dent of length. As a result of the length correction,
the variance of the similarity scores is typically
reduced from 30 to 50%, which can improve the
statistical signi®cance of a related sequence score 5
to 20-fold or more, while the scores of long (>2000
amino acid residues) library sequences are often
reduced from 0.5 to 1 standard deviation.

The regress2 strategy uses the following steps.
(1) As with regress1, the similarity scores are

``binned'' into a histogram as a function of lnnl,
where nl is the length of the library sequence. The
mean m and SEM of each bin are calculated.

(2) A line is ®t using a weighted linear regression
through the mean cores (m) of the bins using
equation (5).

(3) The average residual variance of the bins was
calculated excluding 10% of the bins, 5% with the
largest and 5% with the smallest variance.

(4) The z-value (equation (6)) of each similarity
score is calculated and scores with z-values <ÿ3.0
or >7.0 are removed form the bins and the mean
and SEM of the bin is re-calculated.

(5) Steps (2) to (5) are repeated up to ®ve times,
or until fewer than ®ve sequences have been
removed. For the 110 query sequences used to
search the SwissProt database, 97.4(�12.9) of
59,020 library sequences were excluded after
2.5(�0.07) iterations.

(6) The linear-regression formula (equation (5)) is
calculated a ®nal time, and the average residual
variance bs2 of all the bins is calculated.

(7) Z-values are calculated using equation (7).
(8) Z-scores calculated from z-values as before.

Z-values for unscaled and log-length scaled
scores are calculated from the mean and variance
of the scores, after iteratively pruning scores with
z-values >7.0 and <ÿ3.0. (The mean and variance
was recalculated up to ®ve times after removing
the high and low scoring sequences.) This iterative
strategy is also used to recalculate the log(nl)
regression coef®cients in the regression scaling
instead of removing length ``bins'' with high var-
iance.

Variations on the bin sizes and pruning limits
for regress1, regress2, and regress3 strategies
were examined; the limits chosen tend to exclude a
small number of high or low scoring sequences in
0 to 2 length bins (regress1, regress3) or after only
a few iterations (regress2). The bin size chosen
yields a large number (>45 for library sequence
lengths from 100 to 1000 amino acid residues) of
well-populated bins from sequences that differ in
length by about 10%. Because it excludes all the
scores in a library sequence length bin, the
regress1 strategy appears more aggressive. How-
ever, in the searches of SwissProt, scores from only
1 of the 62 length bins are excluded, on average,
leaving more than 95% of the scores in the remain-
ing 61 bins. The regress2 strategy pruned about
100 scores (<0.2% of the sample) per query
sequence, which is similar to the average number
of related sequences per query (99 � 10). Of course,
the most distantly related sequences are not
excluded by pruning, and thus the 100 pruned
scores include some scores from unrelated
sequences.

Comparison of normalization methods

The ability of searches using different length nor-
malization methods to identify distantly related
sequences was evaluated as described (Pearson,
1995). Brie¯y, searches are done with a large num-
ber of query sequences (110 queries from the Pro-
site/SwissProt ``challenging'' families or 108
queries from the 54 PIR39b families) using two
length normalization methods. For evaluations
using the equivalence number (Pearson, 1995), the
number of sequences missed with each method is
compared, and a method receives a �
or ÿ depending on whether more or fewer
sequences are missed. The distribution of pluses
and minuses is compared to that expected from a
binomial distribution or its normal approximation
(the signtest). The distribution of pluses and
minuses is represented by the z-value the normal
approximation in Figure 4 (right panels) and
Figures 5 and 6; in these Figures, z-values >2 are
statistically signi®cant in a two-tailed test at the
P() < 0.05 level. Signtest z-values for the PIR
queries were divided by

���
2
p

because two queries
were used from each family (Pearson, 1995).

Search performance was also evaluated using
the second criterion for ``®nding'' a related
sequence; the number of related sequences with
E() > 0.02 plus the number of unrelated sequences
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with E() < 0.02. When just the number of related
sequences with E() > 0.02 was used, methods that
produced very low E()-values for every sequence
appeared to perform well. By adding the number
of unrelated sequences with E() < 0.02 to the num-
ber of related sequences with E() > 0.02, methods
with inaccurate E()-values do not have an advan-
tage. Sums of the related sequences with E() > 0.02
and unrelated sequences with E() < 0.02 were com-
pared between methods and evaluated using the
signtest. These results are referred to as the
E() < 0.02 criterion in Figures 4 to 6.
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