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1 Introduction

The concurrent development of molecular cloning techniques, DNA sequencing methods, rapid sequence
comparison algorithms, and computer workstations has revolutionized the role of biological sequence
comparison in molecular biology. As a result, the role of protein sequence data in molecular biology
and biochemistry has dramatically changed. Twenty-five years ago, protein sequence determination was
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usually one of the last steps in the characterization of a protein. Now the process is reversed, so that
it is common to clone and sequence a gene of biological interest–e.g., one that is induced by serum
stimulation, or a developmental change, or a chromosomal rearrangement associated with a disease.
This is the fundamental premise of the human genome project—that one can first sequence all the genes
in an organism and then infer their function by sequence analysis.

Today, the most powerful method for inferring the biological function of a gene (or the protein that
it encodes) is by sequence similarity searching on protein and DNA sequence databases. With the devel-
opment of rapid methods for sequence comparison, both with heuristic algorithms and powerful parallel
computers, discoveries based solely on sequence homology have become routine. One of the more dra-
matic discoveries was the identification of a new tumor suppressor gene in humans that is related to yeast
andE. coli DNA repair enzymes. This discovery, the result of a similarity search, both told the investi-
gators that they had identified the appropriate gene and demonstrated clearly the nature of the oncogenic
mutation. As entire genomes from bacteria, yeast, and simple eukaryotes become available, protein
sequence comparison will become an even more powerful tool for understanding biological function.

Protein sequence comparison is our most powerful tool for characterizing protein sequences because
of the enormous amount of information that is preserved throughout the evolutionary process. For many
protein sequences, an evolutionary history can be traced back 1–2 billion years. Proteins that share a
common ancestor are calledhomologous. Sequence comparison is most informative when it detects
homologousproteins. Homologous proteins always share a common three-dimensional folding structure
and they often share common active sites or binding domains. Frequently homologous proteins share
common functions, but sometimes they do not. Our ability to characterize the biological properties of
a protein based on sequence data alone stems almost exclusively from properties conserved through
evolutionary time. Predictions of common properties for non-homologous proteins—similarities that
have arisen by convergence— are much less reliable.

This tutorial examines how the information conserved during the evolution of a protein molecule
can be used to infer reliablyhomology, and thus a shared protein fold and possibly a shared active site
or function. We will start by reviewing a geological/evolutionary time scale. Many protein sequences
can be used to infer reliably events that happened more than a billion years ago. Remarkably, some
protein sequences change so slowly that they could be used to “date” events that took place more than 5
billion years ago, had the proteins existed. Next we will look at the evolution of several protein families.
During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be
inferred with confidence. We will also examine different modes of protein evolution and consider some
hypotheses that have been presented to explain the very earliest events in protein evolution.

The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both
optimal and heuristic algorithms and their associated parameters that are used to characterize protein
sequence similarities are discussed. Perhaps more importantly, we will survey the statistics of local
similarity scores, and how these statistics can both be used to improved the selectivity of a search and to
evaluate the significance of a match.

We will then examine distantly related members of three protein families, the serine proteases, the
glutathione transferases, and the G-protein-coupled receptors (GCRs). The serine proteases are used to
emphasize that even when a highly conserved motif is found throughout a family, similarity extends over
a much longer region. The glutathione transferases and GCRs are very diverse families whose members
frequently do not share significant pair-wise similarity. The relative strengths of strategies to characterize
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such relationships will be examined.

Finally, we will discuss how sequence similarity can be used to examine internal repeated or mosaic
structures in proteins. Such repeated structures can arise from either divergence—calmodulin EF-hand
repeats and EGF-domains—or convergence—tropomyosin and transcription factor coiled-coil.

This tutorial is directed towards examining protein evolution. Most of the algorithms and methods
that are applied to protein evolution can be used with DNA sequences as well. However, in general, DNA
sequence comparisons are far far less informative than protein sequence comparisons (see Fig. 8). DNA
sequences that do not encode proteins or structural RNAs (e.g. ribosomal RNAs) diverge very rapidly,
so that it is usually difficult to detect reliably non-coding DNA sequence homologies for sequences
that diverged more than 200 million years ago. In contrast, even the most rapidly changing protein
sequences can detect sequences that are 200 million years old; typically protein sequence comparisons
detect sequences that diverged 1 billion years ago. Thus, the most important lesson from this tutorial
is, when searching sequence databases for homologous sequences, to use protein sequences whenever
possible.

1.1 Evolutionary time scales

When we search forhomologousproteins, we are trying to identify proteins that shared a common an-
cestor in the past. Fig. 1 shows a general evolutionary tree that reaches back to the beginning of the
earth’s history. The goal of protein sequence comparison is to take a protein sequence, for example from
a human chromosome, and search a protein database to findhomologoussequences, often from very
divergent organisms. Thus, if the similarity search produces significant matches with a protein found in
yeast, then an ancestral protein must have existed in an organism at least 1 billion years ago and that the
descendants of that organism preserved the sequence in modern day humans and yeast. Likewise, if a
yeast protein is homologous to one found inE. coli, that sequence must have existed in 2 billion years
ago in the primordial organism that gave rise to bacteria and fungi.

When we examine protein or DNA sequences, we are almost always studying modern (present day)
sequences. Thus, it does not make any sense to say that a yeast or bacterial sequence is more primitive
than a mammalian sequence; all sequences are contemporary. As we will see later, however, there are
examples of sequences that are found only in vertebrates, or only in animals or plants but not both. Such
sequences are less ancient than those found both in mammals and bacteria.

For organisms that diverged within the past 600 My (million years), inferences about divergence
times for modern organisms are taken from geological data; more ancient divergence times are inferred
from extrapolations of evolutionary “clocks.” Evolutionary clocks are based both on slowly changing
protein sequences and on ribosomal RNA sequences; such divergence time estimates require a rate of
change that is constant on average. The oldest fossils are of prokaryotes in rocks about 2.5 billion years
old; this geological age is consistent with that inferred from evolutionary divergence rates.

Table 1 summarizes some important milestones in evolutionary time, and, when considered with
Table 2, gives a better perspective on the evolutionary horizons provided by different protein families.
The theoretical lookback times in Table 2 are based on the assumption that one can identify proteins that
share about 20% sequence identity throughout their entire length. It will be clear from later examples
that if two protein sequences share 25% identity across their lengths, they are homologous, and that in
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Figure 1: The tree of life
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Table 1: Some Important dates in history

Origin of the universe -12a ±2
Formation of the solar system -4.6±0.4
First self-replicating system -3.5±0.5
Prokaryotic-eukaryotic divergence -1.8±0.3
Plant-animal divergence -1.0
Invertebrate-vertebrate divergence -0.5
Mammalian radiation beginning -0.1

aBillions of years. From Doolittleet al., 1986.

some cases, convincing evidence of common ancestry can be deduced from similarities as low as 20%.
These look-back times can be confirmed in practice; for example, with sensitive sequence comparison
algorithms, significant similarity between plant and animal globins can be found.

1.2 Similarity, Ancestry and Structure

The inference of homology — common ancestry — is the most powerful conclusion that one can draw
from a similarity search because homologous proteins share similar three-dimensional structures. This
can be seen in Fig. 2, where the structures of three members of the serine protease superfamily are shown.

Table 2: Evolutionary Horizons

PAMsa/100 residues Theoretical
Protein /108 years Lookback timeb Horizon

Pseudogenes 400 45c Primates, Rodents
Fibrinopeptides 90 200 Mammalian Radiation
Lactalbumins 27 670 Vertebrates
Ribonucleases 21 850 Animals
Hemoglobins 12 1.5d Plants/Animals
Acid Proteases 8 2.3 Prokayrotic/Eukarotic
Triosphosphate isomerase 3 6 Archaen
Glutamate dehydrogenase 1 18

aPAMs, point accepted mutations.bUseful lookback time, 360 PAMs, 15% identity.
cMillions of years.dBillions of years. Adapted from Doolittleet al., 1986
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Figure 2: Structural similarity in related proteins – serine proteases

Bovine  trypsin (5ptp)

E()<10-84  100% 223/223
Z = 46.6; RMSD 0.0 A

S. griseus trypsin (1sgt)
E()<10-19  36% 226/223

Z=31.3; RMSD 1.6 A

S. griseus protease A (2sga)
E()<2.6 25% 199/181
Z=13.7; RMSD 2.6 A

Subtilisin (1sbt)
E()<280  25% 159/275

Z < 2

Cytochrome c4 (1etp)
E()<5.5  23% 171/190

Z < 2

Expectation values (E()), percent identity, the length of the alignment are shown with respect to bovine
trypsin. The last two numbers report the length of the alignment and the length of the library sequence
whose structure is shown.

Two of these proteins, bovine chymotrypsin andS. griseustrypsin, share strong sequence similarity while
the third related sequence,S. griseusprotease A, does not share significant similarity (E()< 66) yet the
protein has a very similar structure. Thus, as will be seen throughout this chapter, homologous proteins
need not share statistically significant, or even detectable, sequence similarity.

Cytochrome c4 is an example of a very high-scoring, but unrelated protein whose structure is known.
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This high scoring unrelated sequence does not share any structural similarity with trypsin or other serine
proteases. If two proteins are not homologous, one cannot draw any conclusion about their structural
similarity, even though they may have high similarity scores.

1.3 Modes of Evolution

Figure 3: Orthologous sequences — The cytochrome ‘c’ family
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Cytochrome ‘c’s comprise a family of orthologous proteins that are found in all organisms. The se-
quences on this tree areorthologous— two cytochrome ‘c’s are different because they are in different
species.

1.3.1 Conventional divergence from a common ancestor

Homologoussequences can be divided into two groups: (1)orthologoussequences — sequences that
differ because they are found in different species; and (2)paralogoussequences — sequences that differ
because of a gene duplication event. Fig. 3 shows an evolutionary tree fororthologouscytochrome ‘c’
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sequences. The branching pattern, which reflects the differences between cytochrome ‘c’ sequences,
matches the evolutionary relationships of the species that express the proteins.

Figure 4: Orthology and paralogy — The globin family
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Members of the globin oxygen binding protein family have evolved through a series of gene duplications
and speciation events. The humanα andδ genes duplicated less than 50 Mya (δ chains are found in
primates, but not in other mammals).

In general, the organismal tree and the sequence tree will not match if the sequences areparalogous.
Members of the globin oxygen binding protein family are bothorthologous— they differ because of
speciation — andparalogousp — they differ because of gene duplications. Thus, humanα-globin,
mouseα-globin, and chickenα-globin are all orthologs, they differ because of the speciation events
that gave rise to humans, rodents, and birds. Mouseβ globin and humanα globin are paralogous; they
differ because of a gene duplication that created theα and β subunits some 600 Mya (million years
ago). An evolutionary tree based on humanα, chickenα, and mouseβ would imply that humans are
more closely related to chickens than to mice. While such a mistake is unlikely in a well-studied family
like the globins, it can be quite common in large, diverse, and poorly characterized families like the
G-protein-coupled receptors (Fig. 21).
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1.3.2 Sequence similarity and homology, the H+ ATPase

Our first example of the significant sequence similarity shared by homologous proteins will use one of
the chains of the H+-ATPase, or proton-pump, used to convert energy to ATP in the mitochrondria and
chloroplasts of aerobic organisms.

Figure 5: The PAM250 matrix

Cys 12
Ser 0 2
Thr -2 1 3
Pro -1 1 0 6
Ala -2 1 1 1 2
Gly -3 1 0 -1 1 5
Asn -4 1 0 -1 0 0 2
Asp -5 0 0 -1 0 1 2 4
Glu -5 0 0 -1 0 0 1 3 4
Gln -5 -1 -1 0 0 -1 1 2 2 4
His -3 -1 -1 0 -1 -2 2 1 1 3 6
Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6
Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5
Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6
Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5
Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6
Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4
Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9
Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10
Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17

C S T P A G N D E Q H R K M I L V F Y W

The similarity scores in Figs. 6–8 were calculated using the Smith-Waterman algorithm (Smith &
Waterman, 1981,Sec. 2.2), a method that guarantees to calculate the best (optimal) score between any
two protein or DNA sequences, given a scoring matrix and gap penalties. Fig. 5 shows the PAM250
matrix, which was developed almost 20 years ago by Dayhoff and her colleagues (Dayhoffet al., 1978).
The PAM250 matrix, or modern versions such as the BLOSUM50 matrix used here, incorporates infor-
mation about the likelihood that one amino-acid will be mutated into another over evolutionary time.
Thus, changes that are very unlikely to occur in evolution, for example the substitution of the very small
glycine residue for the very large tryptophan residue, are given large negative scores (−7 in Fig. 5),
while conservative changes, such as the substitution of lysine by arginine (both have basic side chains),
are given positive scores (+3). The scores for identical matches also vary in the PAM250 matrix, de-
pending on whether the amino-acids are common (e.g. serine and methionine), and thus likely to be
aligned by chance, or rare (e.g. cysteine and tryptophan). There is a well-developed statistical theory for
substitution matrices (Altschul, 1991), which will be discussed in section 3.2.

Table 3 reports similarity scores and their statistical significance from a search of the PIR annotated
protein sequence database (PIR1, release 44, March, 1995) using the human H+-ATPase as a query
sequence. There is excellent agreement between the expected and actual distributions of similarity scores.
In this search, all of the library sequences related (homologous) to the query sequence obtained scores
higher than any of the unrelated sequences. However, a number of unrelated sequences obtained very
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Figure 6: Searching with human ATP-ase, similarity scores

opt E()

< 20 17 0:= one = represents 22 library sequences

22 0 0:

24 0 0:

26 2 0:=

28 7 3:*

30 7 18:*

32 45 68:===*

34 166 184:========*

36 337 379:================ *

38 581 626:=========================== *

40 869 873:=======================================*

42 1009 1067:============================================== *

44 1276 1177:=====================================================*====

46 1253 1198:======================================================*==

48 1199 1147:====================================================*==

50 1032 1047:===============================================*

52 949 920:=========================================*==

54 838 786:===================================*===

56 578 657:=========================== *

58 467 539:====================== *

60 393 437:================== *

62 339 350:===============*

64 276 278:============*

66 214 220:=========*

68 188 173:=======*=

70 140 136:======*

72 131 106:====*=

74 88 83:===*

76 71 64:==*=

78 48 50:==*

80 43 39:=*

82 38 30:=*

84 27 24:=*

86 21 18:*

88 15 14:*

90 17 11:*

92 7 8:* :=======* = represents 1 library sequence

94 22 7:* :======*===============

96 3 5:* :=== *

98 8 4:* :===*====

100 6 3:* :==*===

102 5 2:* :=*===

104 9 2:* :=*=======

106 4 1:* :*===

108 5 1:* :*====

110 4 1:* :*===

112 4 1:* :*===

114 4 1:* :*===

116 6 0:= *======

118 1 0:= *=

>120 32 0:== *================================
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high scores; 10 of the 32 sequences with z-scores> 120 (7 standard deviations above the mean1) are not
members of the H+-ATPase family.

Fig. 6 shows the distribution of similarity scores between human H+-ATPase (PIR entry PWHU6)
and each protein sequence in the PIR1 (rel. 44) database. The ‘=’ symbols in the histogram show the
distribution of normalized similarity scores calculated during the search, thus, 393 sequences in the PIR1
library had scores of 60 or 61. The ‘*’ symbols report the expected number of sequences with the
indicated range of scores for a search of a database of this size, based on random chance. The basis for
the statistical estimates will be discussed in section 3.

While Table 3 shows that all of the members of this family have siginificant similarity with the human
enzyme, Fig. 7 gives a more realistic perspective of the family’s evolutionary history by considering every
possible pairwise alignment. When theE. coli enzyme is used to search the database for related H+-
ATPases, the ranking of the different sequences changes, but sequences distant from theE. coli sequence
have more significant similarities than those distant from the human sequence.

1The z-scores plotted have a mean of 50 and a standard deviation of 10.
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Table 3: Searching with human ATP-ase, high-scoring sequences

The best scores are: s-w bits E(14548) % len

PWHU6 H+-trans. ATP synth.—human mito. 1400 327 10−89 100.0 226
PWBO6 H+-trans. ATP synth.—bovine mito. 1157 271 10−73 77.9 226
PWMS6 H+-trans. ATP synth.—mouse mito. 1118 262 10−71 75.7 226
PWXL6 H+-trans. ATP synth.—frog mito. 745 177 10−45 53.3 226
PWFF6 H+-trans. ATP synth.—fruit fly mito. 471 115 10−26 37.5 224
PWBY3 H+-trans. ATP synth.—yeast mito. 438 107 10−23 36.2 232
PWAS6N H+-trans. ATP synth.—aspergillus mito. 365 91 10−18 30.4 230
PWKQ6 H+-trans. ATP synth.—Cochliobolus mito. 353 88 10−17 31.3 214
PWWT6 H+-trans. ATP synth.—wheat mito. 309 78 10−14 28.9 235
PWNT6M H+-trans. ATP synth.—tobacco mito. 309 78 10−14 28.3 233
PWZM6M H+-trans. ATP synth.—corn mito. 283 72 10−13 31.1 291
LWEC6 H+-trans. ATP synth.—E. coli 178 48 10−5 23.3 236
LWRZ6 H+-trans. ATP synth.—rice chloro. 144 40 0.00063 24.2 231
PWPMA6 H+-trans. ATP synth.—pea chloro. 143 40 0.00074 25.0 232
PWYBAA H+-trans. ATP synth.—Synechocystis 142 40 0.00099 26.5 170
PWSPA6 H+-trans. ATP synth.—spinach chloro. 138 39 0.00016 24.2 231
PWYCA6 H+-trans. ATP synth.—cyanobacteria 127 36 0.0099 26.3 167
LWNT6 H+-trans. ATP synth.—tobacco chloro. 126 36 0.011 22.1 231
LWLV6 H+-trans. ATP synth.—Marchiantia chloro. 126 36 0.011 24.0 167
PWEGAC H+-trans. ATP synth.—Euglena chloro. 123 35 0.018 25.7 214

JQ0026 ATP/ADP translocase tlc1—Rickettsia 122 35 0.045 24.7 154
S17420 ubiquinol-cytochrome-c reductase 113 33 0.14 23.4 158
S17418 ubiquinol-cytochrome-c reductase 108 32 0.30 24.5 208
QXBO2M NADH dehydrogenase (ubiquinone) 107 32 0.32 26.1 211
S17415 ubiquinol-cytochrome-c reductase 105 31 0.49 27.7 137
DNHUN2 NADH dehydrogenase (ubiquinone) 103 31 0.61 20.1 149
CBHU ubiquinol-cytochrome-c reductase 102 31 0.79 26.8 205
QRECAA amino acid trans. protein—E. Coli 104 31 0.82 23.4 111
S17419 ubiquinol-cytochrome-c reductase 101 30 0.92 23.4 158
S17407 ubiquinol-cytochrome-c reductase 99 30 1.3 23.6 140
QQBEN5 integral membrane protein—saimiriine herp 98 30 1.4 20.8 202

The horizontal line indicates the separation been the lowest scoring related sequences and the highest
scoring unrelated sequence.
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Figure 7: Phylogeny of H+-ATPases

Human mito.

Bovine mito.

Mouse mito.

Frog mito.

Fruit fly mito.

Yeast mito.

Cochliobolus mito.

Aspergillus mito.

Corn mito.

Wheat mito.

Rice chloro.

March. chloro.

Tobacco chloro.

Spinach chloro.

Pea chloro.

Cyanobacteria

Synechocystis

Euglena chloro.

E. coli

10-14/10-7

10-5/10-117

0.018/10-12

0.0002/10-12

0.0099/10-12

0.0010/10-11

0.011/10-12

0.0002/10-12

0.0007/10-11

0.011/10-11

10-23/10-7

10-26/0.007

10-89/10-6

10-17/10-5

10-18/10-6

10-13/10-8

10-73/10-5

10-71/10-5

10-45/10-6

An evolutionary tree of H+-ATPases (subunit 6). Sequences were aligned using the GCG PILEUP pro-
gram, distances calculated using the GCG DISTANCES program, and the tree constructed using the
Neighbor-Joining algorithm (GCG GROWTREE). Expectation values from a search with the human
H+-ATPase (PWHU6, Table 3) and a search with theE. coli sequence are shown.
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Figure 8: Searching with human ATPase, high-scoring alignments

LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) prot (272 aa)

s-w opt: 178 Z-score: 218.7 bits: 48.0 E(): 3.3e-06

Smith-Waterman score: 178; 23.729% identity (28.141% ungapped) in 236 aa overlap
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PWHU6 MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIA

:.. ..::: ....:: . ... . ... :. . .: ... .. :.. :.. . . .......

LWEC6 QNPPATFWTINIDSMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIELVIGFVNGSVKDMYHGKSKLIAPLALTIFVWVF

40 50 60 70 80 90 100 110

90 100 110 120 130 140

PWHU6 TTNLLGLLP---------HSF-------TPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPL-----IPMLVIIE

::. ::: : . .:.......:.::. .. ... : : .... : . : :. ::. .:.:

LWEC6 LMNLMDLLPIDLLPYIAEHVLGLPALRVVPSADVNVTLSMALGVF---ILILFYSIKMKGIGGFTKELTLQPFNHWAFIPVNLILE

120 130 140 150 160 170 180 190

150 160 170 180 190 210 220

PWHU6 TISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT

.::: .:..:..:: .:. ::.:.. ::.. : : :: :::. .::..: .:. .::

LWEC6 GVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWILNVPWAIFHILIIT---------LQAFIFMVLTIVYLSMASEEH

200 210 220 230 240 250 260 270

================

PWEGAC H+-transporting ATP synthase (EC 3.6.1.34) cha (252 aa)

s-w opt: 123 Z-score: 151.6 bits: 35.4 E(): 0.018

Smith-Waterman score: 123; 25.701% identity (30.220% ungapped) in 214 aa overlap

10 20 30 40 50 60 70

PWHU6 MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTK-GRT----WSLM

.::: : : : :.: : . . ...: .:.:... . . .:. :. : .

PWEGAC IANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF--LSIYTTKNL--TLVPANKQIFIELVTEFITDISKTQIGEKEYSKWVPY

20 30 40 50 60 70 80 90 100

80 90 100 110 120 130 140 150

PWHU6 LVSLIIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHFLPQGTPTPLIPMLVIIETISLL

. ...:: ..: : :.: .. :. .: . .. . : : . : . . :..:..: :::.. . :.: ..

PWEGAC IGTMFLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYFKKYVQPTPILLPINILEDFT--

110 120 130 140 150 160 170 180

160 170 180 190 200 210 220

PWHU6 IQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT

.:..:. :: .:: : .:.. .. : .: ::. . ::.: .. .. ::: .:. : . :.

PWEGAC -KPLSLSFRLFGNILADELVVAVLVSL--------VP--LIVPVPLIFLGLF---TSGIQALIFATLSGSYIGEAMEGHH

190 200 210 220 230 240 250

Alignments of human H+-ATPase with theE. coli homologue and a plant chloroplast homologue. De-
spite the considerable evolutionary distance (both sequences diverged at least 2 Bya), the pairs of se-
quence share more than 20% identity across almost their entire lengths. ‘:’ symbols denote identities;
‘.’ denote conservative substitutions. Searches were performed with the BLOSUM50 matrix and gap
penalties of -12/-2.
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1.3.3 Protein families diverge at different rates

For many protein families with a variety of divergence rates, the rate of change over evolutionary time is
relatively constant. These rates can be used to date the divergence events (e.g. plants and animals) that
occurred more than 600 Mya and thus do not have a fossil record. However, different protein families
diverge at different rates, so that, in general, the number of differences between a pair of sequences
cannot be used to estimate the time the two sequences diverged. This is particularly true for paralogous
sequences; once a sequence has duplicated, it may change very rapidly before selective pressure on its
new function slows its rate of change. Thus, in Table 4 there are several members of growth hormone
superfamily—growth hormone, sommatotropin, and prolactin—with different divergence rates.

Figure 9: The limits of sequence similarity
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Table 4: Rates of change in protein families

Protein Ratea Protein Rate

Fibrinopeptides 90 Thryrotropin beta chain 7.4
Growth hormone 37 Parathyrin 7.3
Ig kappa chain C region 37 Parvalbumin 7.0
Kappa casein 33 BPTI Protease inhibitors 6.2
Ig gamma chain C region 31 Trypsin 5.9
Lutropin beta chain 30 Melanotropin beta 5.6
Ig lambda chain C region 27 Alpha crystallin A chain 5.0
Complement C3a 27 Endorphin 4.8
Lactalbumin 27 Cytochrome b5 4.5
Epidermal growth factor 26 Insulin 4.4
Somatotropin 25 Calcitonin 4.3
Pancreatic ribonuclease 21 Neurophysin 2 3.6
Lipotropin beta 21 Plastocyanin 3.5
Haptoglobin alpha chain 20 Lactate dehydrogenase 3.4
Serum albumin 19 Adenylate cyclase 3.2
Phospholipase A2 19 Triosephosphate isomerase 2.8
Protease inhibitor PST1 type 18 Vasoactive intestinal peptide 2.6
Prolactin 17 Corticotropin 2.5
Pancreatic hormone 17 Glyceraldehyde 3-P DH 2.2
Carbonic anhydrase C 16 Cytochrome C 2.2
Lutropin alpha chain 16 Plant ferredoxin 1.9
Hemoglobin alpha chain 12 Collagen 1.7
Hemoglobin beta chain 12 Troponin C, skeletal muscle 1.5
Lipid-binding protein A-II 10 Alpha crystallin B-chain 1.5
Gastrin 9.8 Glucagon 1.2
Animal lysozyme 9.8 Glutamate DH 0.9
Myoglobin 8.9 Histone H2B 0.9
Amyloid A 8.7 Histone H2A 0.5
Nerve growth factor 8.5 Histone H3 0.14
Acid proteases 8.4 Ubiquitin 0.1
Myelin basic protein 7.4 Histone H4 0.1

apercent/100 My
From (Nei, 1987; Dayhoffet al., 1978)

17



1.3.4 Mosaic proteins

“Conventional” protein families, e.g. the globins, cytochrome ‘c’s, H+-ATPases, in which protein se-
quences have diverged from a common ancestor in a direct fashion, typically with only modest changes
in the length of the sequence, have been known for more than 30 years. In the past 10 years, a more
complex type of protein evolution has been observed—proteins that contain multiple domains from other
proteins. These proteins have been called “mosaic” proteins; the domains are frequently inserted through
a process called “exon shuffling.” Table 7 lists a number of human proteins that are comprised of mosaic
domains, but such proteins are not limited to mammals. Similar mosaic structures are common in DNA
binding proteins, both in bacteria and eukaryotes.

Table 5: Classification of Protein Families

I. Ancient Proteins

A. First editions. Direct-line descendacy to human and contemporary prokaryotes. Mostly mainstream
metabolism enzymes. Example: triosphosphate isomerase (44.8% identical over 250 aa, E(59000)
< 10−36).

B. Second edition. Homologous sequences in human and prokaryotic proteins, but apparently different
functions. Example: human glutathione reductase and pseudomonas mercury reductase (31% identi-
cal over 438 aa, E(59000)< 10−32).

II. Middle-age proteins. Proteins found in most eukaryotes but prokaryotic counterparts are unknown. Exam-
ple: actin (human and yeast share 88% identical over 375 aa, E()< 10−145, other yeast actin homologs share
as little as little as 26.4 % over 489 aa, E()< 10−14.

III. Modern proteins

A. Recent vintage. Proteins found in animals or plants but not both. Not found in prokaryotes. Example:
collagen.

B. Very recent inventions. Proteins found in vertebrates but not elsewhere. Example: plasma albumin.

C. Recent mosaics. Modern proteins clearly the result of exon shuffling. Example: LDL receptor.

From Doolittleet al., 1986.

1.4 Introns Early/Late

The occurrence of mosaic proteins and the discovery of the “exon/intron” structure of genes in the late
1970’s led several investigators to suggest that the exon structure of genes reflected the construction of
proteins from modular domains (Gilbert & Glynias, 1993). While acceptance of this proposal is quite
widespread, it is based on very little data. There is no question that many modern mosaic proteins are
constructed by a process of “exon-shuffling” whereby exons from other genes have been combined to
build new structures. In addition, for some proteins exons are associated with well defined structural
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Table 6: Ancient human proteins

A. First edition type

Human protein Prokaryotic homologue % identity E(59,000)

Triosephosphate isomerase E. coli 46 < 10−36

Phosphoglyceraldehylde dehydrogenaseB. stearothermophilus 52 < 10−78

Alkaline phosphatase E. coli 28 < 10−20

Dihydrofolate reductase E. coli 28 < 10−6

Superoxide dismutase (Cu-Zn) E. coli 32 < 10−7

Hypoxanthine-guanine E. coli 34 < 10−17

phosphoribosyl transferase

B. Second edition type

Glutathione reductase Mercuric reductase,Pseudomonas 31 < 10−32

Glutamate dehydrogenase (NAD) Glutamate dehydrogenase,E. coli 29 < 10−24

Ornithine transcarbamylase Aspartate transcarbamylase,E. coli 26 < 10−11

Adapted from Doolittleet al., 1986

elements. The association of exons with structural elements may reflect and ancient construction of
proteins from primordial exons. Alternatively, introns are also capable of invading genes; thus, the
association of exons with structures may reflect modern invasions that are less disruptive when they
occur between structural elements.

A recent test of the “introns” early hypothesis suggests there is little evidence to support the associa-
tion of introns with structural boundaries (Stoltzfuset al., 1994.

1.5 DNA vs Protein comparison

While all of the comparison methods described below work on either protein or DNA sequences, one’s
ability to identify distantly related sequences is reduced dramatically when DNA sequences are used.
Fig. 8 compares the statistical significance of the best similarity scores obtained in a search of the Gen-
Bank DNA sequence database using a mouse glutathione transferase cDNA clone with the significance
of the same alignment in a search of the GenPept protein sequence database (GenPept is derived from
GenBank by translating DNA sequences into the encoded protein sequences). Many DNA sequences
encoding clearly related proteins, e.g. RABGSTB have similarity scores that are expected to occur sev-
eral times by chance in a DNA database search. DNA sequences are far less informative, both because
they lack the inherent biochemical information that is retained in the PAM250 substitution matrix, and
because many changes in DNA sequences (third-base changes) do not change the encoded protein.

Differences in the performance of sequence comparison algorithms are insignificant compared to the
loss of information that occurs when one compares DNA sequences. If the biological sequence of interest
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Table 7: Mosaic proteins

A. EGF-type B. C9-type
Epidermal growth factor precursor Complement C9
Tumor growth factors LDL receptor
LDL receptor Notch (Drosophila)
Factor IX lin-12 (C. elegans)
Protein C
Tissue plasminogen activator C. Fibronectin finger
Urokinase Fibronectin
Complement C9 Tissue plasminogen activator
Notch protein (Drosophila)
lin-12 (C. elegans) D. Protease “Kringle”

Plasminogen
Tissue plasminogen activator
Urokinase
Prothrombin

From Doolittleet al., 1986.

encodes a protein, protein sequence comparison is always the method of choice.
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Table 8: DNA vs Protein Sequence Comparison

score E(DNA) E(prot) E(tx)

MUSGST Mouse glutathione S-transferase class mu 5090 10−233 10−90 10−120

MUSGSTA Mouse, glutathione transferase GT9.3 mu 3693 10−167 10−73 10−120

HUMGSTAB Homo sapiens glutathione transferase 1930 10−84 10−60 10−80

MAMGLUTRA M.auratus mu class GST 399 10−11 10−73 10−11

RATGSTYD Rat glutathione S-transferase Yb subunit 399 10−11 10−74 10−10

HSGSTM4 H.sapiens GSTM4 gene for GST 390 10−11 10−69 10−10

RATGSTY Rattus norvegicus GST 372 10−10 10−71 10−10

HSGSTM1B H.sapiens GSTM1b gene for GST 358 10−9 10−63 10−10

HSGSTMU3 Human GSTmu3 gene for a GST 322 10−7 10−25 10−6

BTGST Bovine GST mRNA for GST 249 0.00013 10−16 10−22

HSGSTPI1 Human mRNA for anionic GST 237 0.00049 10−17 10−21

MUSGTF Mus musculus GST mu 196 0.041 10−4 10−6

CRUGSTP Chinese hamster GST 196 0.043 10−16 10−21

CRUGSTPIE Cricetulus griseus GST pi 196 0.04 10−16 10−21

HAMGSTPIE Mesocricetus auratus GST pi 191 0.13 10−16 10−21

BTRNAXOR B.taurus xanthine oxidoreductase 184 0.11 > 10 > 5
HUMKAL2 Human glandular kallikrein gene 170 0.59 > 10 > 5
RNGSTYC2F R.norvegicus GST Yc1 170 0.67 10−6 > 5
MMGLUT M.musculus mRNA for GST 168 1.0 10−7 10−8

MUSTHYGP Mouse Thy-1.2 glycoprotein 163 1.3 > 10 > 5.0
HUMTROPI01 Human troponin I, slow-twitch isoform 161 1.7 > 10 > 5

Expectation values for searches against DNA (score, E(DNA)), protein (E(prot)), and translated DNA (E(tx)
databases. A mouse glutathione transferase cDNA sequence (MUSGST) was used to search either the primate
(GBPRI), rodent (GBROD), and mammalian (GBMAM) divisions of the GenBank DNA sequence database for
the DNA sequence comparisons. Protein expectations (E(prot)) were calculated from a search the translated cDNA
sequence against the GenPept sequence database, which includes all of translated GenBank. Unrelated sequences
areitalicized; E(prot) for unrelated sequences are>> 100.
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2 Alignment methods

A variety of comparison algorithms and scoring parameters can be used to evaluate protein or DNA
sequence similarity. In general, the choice the of “best” algorithm depends on the problem to be solved.
Thus, algorithms that calculate a local comparison score—i.e., they find the strongest similarity between
the two sequences, ignoring differences outside of the most similar region—are usually most appropriate
for searching protein and DNA databases,2 while global comparison algorithms are more appropriate
when homology has been established, as when building evolutionary trees. Pattern-based, rather than
similarity-based, comparison methods may be preferred when searching for functionally conserved non-
homologous domains.

In searching protein sequence databases to identify distantly related homologous proteins, it is im-
portant to remember that avoiding high similarity scores with unrelated sequences can be more important
as calculating high scores for related sequences. There are more than 50,000 protein sequences in com-
prehensive protein databases, while the typical family of proteins has fewer than 100 members. Thus,
comparison algorithms, scoring matrices and gap penalties that produce the best alignments may not be
the most effective for searching protein sequence databases (Pearson, 1995; Pearson, 1998).

2.1 Algorithms

Two general classes of comparison algorithms are used to calculate similarity scores to infer sequence
homology: rigorous algorithms that are guaranteed to calculate an optimal similarity score, e.g. the
NeedlemanWunsch (Needleman & Wunsch, 1970) and SmithWaterman (Smith & Waterman, 1981) al-
gorithms, and rapid heuristic algorithms that do not guarantee to calculate an optimal score for every
sequence in a library, e.g. FASTA (Pearson & Lipman, 1988) and BLAST(Altschulet al., 1990). Ta-
ble 2.1 summarizes widely used algorithms for biological sequence comparison.

Two optimal algorithms for calculating similarity scores have been described, the NeedlemanWunsch
algorithm (Needleman & Wunsch, 1970), which calculates a “global” similarity score between two se-
quences, and the Smith-Waterman algorithm (Smith & Waterman, 1981), which calculates a “local”
similarity score. Global scores require the alignment to begin at the beginning of each sequence and
extend to the end of each sequence. Global alignments cannot be used to detect the relationship between
DNA binding domains in homeobox proteins or the calcium binding domains shared between calmodulin
and calpain. Likewise, global alignment algorithms often do not detect the relationships between mosaic
proteins. Global similarity scores can be calculated with or without penalties for gaps at the ends of the
sequences.

Local alignment algorithms identify the most similar region shared between two sequences. Thus,
homologous calcium binding domains embedded in non-homologous proteins can be detected with local
alignment methods. In addition, a local alignment algorithm can be used to find the exons in a genomic
DNA sequence by aligning it with its encoded mRNA. Local alignment algorithms are required to identify
homologies in mosaic proteins, and they can be used to detect internal domain duplications as well.
Table 10 compares the scores of global, global without end-gap-penalties, and local similarity scores for

2For genomic DNA sequences, there is no logical alternative.
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Table 9: Algorithms for comparing protein and DNA sequences

algorithm value scoring gap time
calculated matrix penalty required

Needleman- global similarity arbitrary penalty/gap O(n2) Needleman and
Wunsch q Wunsch, 1970

Sellers (global) distance unity penalty/residue O(n2) Sellers, 1974
rk

Smith- local similarity Ŝi j < 0.0 affine O(n2) Smith and Waterman, 1981
Waterman q+ rk Gotoh, 1982

FASTA approx. local Ŝi j < 0.0 limited gap size O(n2)/K Lipman and Pearson, 1985
similarity q+ rk Pearson and Lipman, 1988

BLASTP maximum Ŝi j < 0.0 multiple O(n2)/K Altshul et al., 1990
segment score segments

a variety of related and unrelated proteins.

Rigorous sequence comparison algorithms, like the Smith-Waterman algorithm, require time propor-
tional to O(mN), wherem is the length of the query sequence andN is the number of amino acids in
the protein sequence library. Modern high-performance unix workstations can compare a 300 residue
protein sequence (human opsin) to the 40,000 entry, 15,000,000 amino acid Swiss-Prot 31 database in
less than 10 minutes.

Although very rapid3 algorithms are available for calculating optimal global similarity scores be-
tween two sequences, particularly with unit cost scores, such algorithms are rarely appropriate for bio-
logical sequence comparison. Unit cost algorithms must discard the substantial biochemical information
encoded in the PAM250 matrix. Most rapid optimal algorithms calculate only global similarities; such
comparisons are not useful for DNA sequence comparison because the “ends” required for a global se-
quence comparison are usually arbitrary.

2O(Nd), whereN is the length of a sequence andd is the number of differences between the two sequences.
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Table 10: Global and local sequence similarity scores

Similarity Score Distance
PIR Entry Global Local

End No End
Penalty Penalty

HBHU vs HBHU Hemoglobin beta-chain—human 725 725 725 0
HAHU Hemoglobin alpha-chain—human 314 320 322 152
MYHU Myoglobin—Human 121 164 166 212
GPYL Leghemoglobin—Yellow lupin 8 28 43 239
LZCH Lysozyme precursor—Chicken −107 16 32 220
NRBO Pancreatic ribonuclease—Bovine −124 16 31 280
CCHU Cytochrome c—Human −160 10 26 321

MCHU vs MCHU Calmodulin—Human 671 671 671 0
TPHUCS Troponin C, skeletal muscle 395 430 438 161
PVPK2 Parvalbumin beta—Pike −57 103 115 313
CIHUH Calpain heavy chain—Human −2085 89 100 2463
AQJFNV Aequorin precursor—Jelly fish −65 48 76 391
KLSWM Calcium binding protein—Scallop −89 45 52 323

QRHULD vs EGMSMG Epidermal growth factor precursor −591 475 655 2549
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Figure 10: Global and local alignment paths

A. Global

A B D D E F G H I

A \ \ \ \ \ \ \ \ \

1 _-1 -1 -1 -1 -1 -1 -1 -1

B \ ! \ \ \ \ \ \ \

-1 2 _ 0 _-2 -2 -2 -2 -2 -2

D \ ! \ \ \ \ \ \

-1 0 3 _ 1 _-1 _-3 -3 -3 -3

E \ \ ! ! \ \ \ \

-1 -2 1 2 2 _ 0 _-2 _-4 -4

G \ \ ! \ ! \ \ \

-1 -2 -1 0 1 1 1 _-1 _-3

K \ \ \ ! \ ! \ ! \ \ \ \

-1 -2 -3 -2 -1 0 0 0 _-2

H \ \ \ \ ! \ ! \ ! \ \ \

-1 -2 -3 -4 -3 -2 -1 1 _-1

I \ \ \ \ \ ! \ ! \ ! ! \

-1 -2 -3 -4 -5 -4 -3 -1 2

Optimal global alignments (score 2):

A B D D E F G H I (top)

A B D - E G K H I (side)

or A B - D E G K H I

B. Local

A B D D E F G H I

A \

1 0 0 0 0 0 0 0 0

B \

0 2 _ 0 0 0 0 0 0 0

D ! \ \

0 0 3 _ 1 0 0 0 0 0

E ! \ \

0 0 1 2 2 _ 0 0 0 0

G \ ! \ \ \

0 0 0 0 1 1 1 0 0

K \ \ \

0 0 0 0 0 0 0 0 0

H \

0 0 0 0 0 0 0 1 0

I \

0 0 0 0 0 0 0 0 2

Optimal local alignment (score 3):

A B D (top)

A B D (side)

2.2 Dynamic Programming Algorithms

The algorithms used to calculate the maximum similarity scores between two sequences are most easily
visualized with an alignment matrix or path graph. Figs. 10–11 demonstrate the correspondence between
an alignment path graph and an actual alignment. The goal along the path is to maximize the similarity
score for the alignment that ends at each potential vertex. For the figures, similarity scores are increased
by +1 for diagonal edges if the two residues along the path are identical; if they are different, the diagonal
edge cost is−1. The cost along either a horizontal or vertical edge, which corresponds to an insertion
in the top sequence (horizonal edge) or an insertion in the left-side sequence (vertical edge) is−2. To
produce a global alignment from a path graph, simply begin at the bottom-right corner of the graph and
follow the “active” paths, noted by\, or ! to the upper-left corner, aligning the two residues along the
diagonal path, or aligning a residue with a gap if a horizontal or vertical path is taken.

For the global alignment in Fig. 10A, there are two alignments that produce the optimal score. Op-
timal comparison algorithms guarantee to produce the best score, given the match, mismatch, and gap
costs, but frequently there are several optimal alignments for a single score. For the local alignment in
Fig. 10B, there are several sub-optimal alignments with scores of 2. Note that the local alignment in
Fig. 10B would extend from one end of each sequence to the other if the gap cost were reduced to−1.

Fig. 11 provides an exercise for the reader.

While there are an exponential number of potential alignments with gaps between two protein or
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Figure 11: An alignment path matrix
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DNA sequences, dynamic programming algorithms are available that can calculate the optimal score in
O(MN) steps. This efficiency is achieved by determining the optimal score for each prefix of each string,
and then extending each prefix by considering the three paths that can be used to extend an alignment:
(1) by extending the alignment by one residue in each sequence; (2) by extending the alignment by one
residue in the first sequence and aligning it with a gap in the second; or (3) extending the alignment by
one residue in the second sequence and aligning it with a gap in the first. This decision must be made for
each of theMN prefixes of sequences of lengthM andN.

The first algorithm for comparing protein sequences (Needleman & Wunsch, 1970) calculates a
“global” similarity score. A simplified global algorithm is shown in Fig. 12. Since a global algorithm
requires that the alignment extend from the beginning to the end of the alignment, it is sufficient to report
the score in the lower right (S(M,N)) of the scoring matrix.

Local alignment algorithms must consider alignments that begin and end at each of theMN positions
in the alignment matrix. Despite this added complexity, they only add two additional steps to the global
alignment algorithm. Since every possible starting position must be considered, similarity scores cannot
fall below zero and a 0 term is added to themax comparison in Fig. 12. Since they can end at any
position in the matrix, thebestscore must be saved at each step. In practice, global and local comparison
algorithms require the same amount of computation.
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Figure 12: Algorithms for Global and Local similarity scores

S(0,0)← 0
for j ← 1 to N do

S(0, j)← S(0, j−1)+ σ(
−
b j

)

for i← 1 to M do

[ S(i,0)← S(i−1,0)+ σ(
ai

− )

for j ← 1 to N do

S(i, j)←max[S(i−1, j−1)+ σ(
ai

b j
),S(i−1, j)+ σ(

ai

− ),S(i, j−1)+ σ(
−
b j

)]

]
write “Global similarity score is”S(M,N)

best← 0
for j ← 1 to N do

S′(0, j)← 0
for i← 1 to M do
[ S′(i,0)← 0

for j ← 1 to N do

[ S′(i, j)←max[0,S′(i−1, j−1)+ σ(
ai

b j
),S′(i−1, j)+ σ(

ai

− ),S′(i, j−1)+ σ(
−
b j

)]

best← max(S′(i, j),best)
]
write “Local similarity score is”best

2.3 Heuristic Algorithms

Two rapid heuristic algorithms are frequently used for searching protein and DNA sequence databases,
FASTA (Pearson & Lipman, 1988) and BLASTP (Altschulet al., 1990). These methods are 5–50 times
faster than the rigorous Smith-Waterman algorithm, and can produce results of similar quality in many
cases.

Fig. 13 summarizes the difference between the FASTA, BLASTP, and Smith-Waterman algorithms.
BLASTP and FASTA are faster than Smith-Waterman because they examine only a portion of the poten-
tial alignments between two sequences. FASTA focuses on regions where there are either pairs (ktup=2)
or single alignedktup=1 identities; BLASTP examines regions that include triples of conserved amino
acids.
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Figure 13: Heuristic strategies for sequence comparison
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Table 11: Sequence similarity with BLASTP

Step 1 For each three amino acids in the query sequence, identify all of the substitutions of each word that have a
similarity score greater than a threshold scoreT =. In practice, word-matches with scores≥ T are seen on
average 150 times per library sequence.

Step 2 Build a discrete finite automaton (DFA) to recognize the list of identical and substituted three letter words.

Step 3 Use the DFA to identify all of the matching words in sequences in the database. If two matches are found,
extend each match both forwards and backwards using the BLOSUM62 matrix, allowing gaps, to produce a
score that is higher than a threshold score. Save all of the high scoring regions shared by the query sequence
and each library sequence.

Step 4 Report all of the significant alignments. Frequently, a query and library sequence will contain several MSPs
because of the requirement that they do not contain gaps.

2.3.1 BLAST

Advances in the statistical theory of sequence alignments without gaps (Karlin & Altschul, 1990) pro-
vided the theoretical basis for the BLASTP program (Altschulet al., 1990). BLASTP is now the most
widely used program for rapid sequence comparison, in large part because of its accurate estimates for
the statistical significance of similarity scores (see 3. BLASTP, like FASTA, uses a word-based scanning
procedure to identify regions of local similarity (Table 11) with out gaps. BLASTP is effective because
it combines high sensitivity with excellent selectivity. BLASTP combines good sensitivity with excep-
tional selectivity. Except when the query sequence contains a low complexity region, BLASTP rarely
calculates scores for unrelated sequences.

2.3.2 FASTA

The current version of FASTA provides several significant improvements over earlier versions. FASTA
now calculates optimized scores (step 4 in Table 12)) for most of the sequences in the database and
provides accurate estimates for statistical significance (3). Calculation of optimized scores improves
substantially the performance of FASTA. Without the calculation, FASTA performs significantly worse
than BLASTP; however, with the calculation of optimized scores (and normalization of the scores based
on library sequence length), FASTA performs significantly better than BLASTPv1.4 and almost as well
as the Smith-Waterman algorithm (Pearson, 1995). In addition, FASTA now uses the Smith-Waterman
algorithm to produce final alignments; previous versions limited the size of gaps, which sometimes led
to incomplete alignments.

Every database search for members of a diverse protein family involves a tradeoff between sensitivity—
the ability to identify distantly related members of the family—and selectivity—the ability to avoid high
similarity scores for unrelated sequences. Table 3.3 compares how effectively the three algorithms main-
tain this balance for a large protein family—the G-protein-coupled receptors. Thus, BLASTP calculates
a very highly significant score for the closely related opsin and dopamine D2 receptors, and a significant
score for the more distantly related thromboxane A2 receptor, but it does not detect the similarity between
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Table 12: Sequence similarity with FASTAv33

Step 1 Identify regions shared by the two sequences with the highest density of identities (ktup=1) or pairs of
identities (ktup=2). If the -S option is used, low-complexity (lower-case) letters are ignored in steps 1–5.

Step 2 Rescan the ten regions with the highest density of identities using the BLOSUM50 matrix. Trim the ends of
the region to include only those residues contributing to the highest score. Each region is a partial alignment
without gaps.

Step 3 If there are several initial regions with scores greater than the CUTOFF value, check to see whether the
trimmed initial regions can be joined to form an approximate alignment with gaps. Calculate a similarity
score that is the sum of the joined initial regions minus a penalty (usually 20) for each gap (initn). The score
of the single best initial region found in Step 2 is also reported (init1).

Step 4 For sequences with scores greater than a threshold, construct an optimal local alignment of the query se-
quence and the library sequence, considering only those residues that lie in a band centered on the best
initial region found in Step 2. For protein searches withktup=2a 16 residue band is used by default. A 32
residue band is used withktup=1. This is the optimized (opt) score.

Step 5 (Statistical estimates) After the first 60,000 scores have been calculated, normalize the raw similarity scores
using estimates for the statistical parameters of the extreme value distribution. The default strategy regresses
the similarity score against ln(library-sequence length) and calculating the average variance in similarity
scores. Z-values(normalized scores with mean 0 and variance 1) are calculated, and the calculation is
repeated with library sequences withz-valuesgreater than 5.0 and less than -5.0 removed. These z-values
are used to rank the library sequences, but other estimation strategies are available.

Step 6 The Smith-Waterman algorithm (without limitation on gap size) is used to display alignments. Final align-
ments score low-complexity regions.

opsin and the very distantly relatedDictyosteliumcAMP (CAR1) receptor. In addition, BLASTP would
never suggest a relationship between opsin and cytochrome oxidase. FASTA (ktup=2 does a better job
at recognizing the relationship between opsin and thromboxane A2, fails to detect the cAMP-1 receptor,
and is more ambiguous about a possible relationship with cytochrome oxidase. FASTA withktup=1
and Smith-Waterman calculate statistically significant relationships between opsin and cAMP-1, but also
good (but not significant) scores for opsin and cytochrome oxidase.

3 The statistics of sequence similarity scores

The development of accurate statistical estimates for local sequence similarity scores (Karlin & Altschul,
1990; Mott, 1992) has allowed dramatic improvement in our ability to reliably recognize distantly re-
lated proteins. The statistical estimates calculated by BLASTP are used widely in large scale sequence
comparison, e.g. to characterize all of the genes on a yeast chromosome or all of the genes in a bacte-
rial genome. The incorporation of statistical estimates into FASTA and SSEARCH (a Smith-Waterman
implementation) have significantly improved the performance of these programs as well.
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Figure 14: The extreme value distribution
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3.1 Sequence alignments without gaps

The statistics of local similarity scores for alignments without gaps but with an arbitrary substitution
matrix have been described by Karlin & Altschul, 1990. Local similarity scores are described by the
extreme valuedistribution. Using the parametersλ andK, which can be derived from the scoring matrix
and the amino acid composition of the query sequence, the probability that a normalized similarity score:

S′ = λS− lnKmn (1)

(Karlin & Altschul, 1990; Altschulet al., 1994) wherem is the length of the query sequence andn is the
length of the library sequence can be calculated as:

P(S′ ≥ x) = 1−exp(−e−x) (2)

or
P(S≥ x) = 1−exp(−Kmne−λx) (3)

Since a typical database search typically involves thousands of pairwise comparisons, the expectation
of finding a scoreS′ ≥ X for a search ofD sequences is:E(S′ ≥ X) = PD. (Thus, searches of highly
redundant databases may be less informative, becauseD is larger but the number of different sequences
is not.)

3.2 Scoring matrices

The scoring matrices used for protein sequence comparison are much more sophisticated than+1 for
a match and−1 for a mismatch. The most effective matrices are based on the actual frequency of
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substitutions that occur between related proteins. Similarity scoring matrices can differ in three ways:
(1) the method by which they are constructed; (2) their information content, which is related to the
number of residues that must be aligned to produce a statistically significant score, and (3) their scale -
the amount of information provided per unit score.

Two general approaches have been used to produce scoring matrices. The original PAM250 matrix
(Fig. 5) was produced by examining several hundred alignments between very closely related proteins,
and then calculating the frequency with which each amino-acid residue changed into each of the oth-
ers at a very short evolutionary distance—one where only 1% of the residues had kchanged (Dayhoff
et al., 1978). This replacement frequency, when corrected for the amino-acid abundance, can be used
to calculate the PAM1 scoring matrix (PAM is “Point Accepted Mutation”). If the matrix is multiplied
against itself 250 times, a PAM250 matrix, which reflects the frequency of change for proteins that have
diverged 250%. If two protein sequences have diverged by 250%, it is expected that they will share about
20% sequence identity (Fig. 9). Since 20% identity is at the edge of where significant similarity can be
detected, the PAM250 matrix has been widely used. The PAM250 matrix is based on small number of
amino acid substitutions; modern extrapolated matrices based both on sequence alignments (Joneset al.,
1992) and structural alignments (Johnson & Overington, 1993) are available.

Alternatively, substitution matrices can calculated directly by examining “blocks” of aligned se-
quences that differ by no more thanX% (Henikoff & Henikoff, 1992). Thus, the BLOSUM62 matrix,
which is used by the BLASTP rapid comparison program, is derived from substitution data for blocks of
aligned sequences that are no more than 62% identical. BLOSUM62 performs substantially better than
extrapolated matrices with BLASTP and FASTA (Henikoff & Henikoff, 1993), but both BLOSUM and
extrapolated matrices can perform well when used with optimal gap penalties (Pearson, 1995).

PAM-style matrices and BLOSUM matrices differ not only in the way they they are built, but also in
the way they are used. “Shallow” PAM matrices (PAM20, PAM20, PAM40) have low numbers, and indicate
that very little evolutionary change has taken place. “Conservative” BLOSUM matrices (e.g.BLOSUM80)
have high numbers, and indicate a high degree of sequence conservation, in contrast to a small amount
of evolutionary change.

Altschul (1991) has provided a information-theory based perspective for evaluating scoring matrices
in general for alignments without gaps (Altschul, 1991). With this interpretation, one can think of each
entry si j in a scoring matrix as a “log-odds” valuesi j = log( qi j

pi p j
), whereqi j is the “target” residue

substitution frequency—the frequency with which residueA is replaced byM, or vice-versa, after a certain
amount of evolutionary change—andpi , p j are the probabilities that the residues would align by chance,
based solely on their frequency in a sequence. For a given pairwise sequence comparison,pi , p j will
remain the same for scoring matrices at different evolutionary distances, butqi j will vary, depending on
how much change is expected. Thus, in Fig. 15, thePAM40 matrix gives much larger positive scores for
identical matches, lower negative scores for non-conservative replacements, and gives some replacements
negative scores that are scored as conservative replacements whenPAM250 is used. In addition, one
can calculate the the average score, information content, or relative entropyH, that is expected per
aligned residue:H = λ∑i j qi j si j = ∑i j qi j log2

qi j

pi p j
if λsi j is scaled in bits. For thePAM40 andPAM250

matrices in Fig 15,H = 2.26 andH = 0.354 bits/residue. If 40 bits of information are required to obtain
an expectation valueE(80,000) < 0.001, then an alignment of only 40/2.26 = 18 residues would be
required on average forPAM40, while 113 residues would be required withPAM250. However, if the two
sequences last shared a common ancestor 600 Mya, and thus the sequences are separated by 1200 My,
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Figure 15: Where similarity scoring matrices come from

A. PAM40

A R N D E I L
A 8
R -9 12
N -4 -7 11
D -4 -13 3 11
E -3 -11 -2 4 11
I -6 -7 -7 -10 -7 12
L -8 -11 -9 -16 -12 -1 10

B. PAM250

A R N D E I L
A 2
R -2 6
N 0 0 2
D 0 -1 2 4
E 0 -1 1 3 4
I -1 -2 -2 -2 -2 5
L -2 -3 -3 -4 -3 2 6

qi j : replacement frequency at PAM40, 250

qR:N(40) = 0.000435 pR = 0.051

qR:N(250) = 0.002193 pN = 0.043

λ2Si j = log2(qi j/pi p j) λeSi j = ln(qi j/pi p j) pRpN = 0.002193

λ2SR:N(40) = log2(0.000435/0.00219) = −2.333

λb/3 = 1/3 SR:N(40) =−2.333/λb/3 = −7

λSR:N(250) = log2(0.002193/0.002193) = 0

ThePAM40 andPAM250 similarity scoring matrices are shown for 6 amino-acid residues. The substitution
matrices are symmetric. Diagonal elements are the scores given to amino-acid identities; off-diagonal
elements are the scores used for amino-acid substitutions. Both thePAM40 andPAM250 matrices are
scaled to 0.33 bits per unit raw score. Thus, if log2

qi j

pi p j
= 2, the entry in the matrix would be 6.

and changed at an “average” rate of 15 PAMs/100 My, their significant similarity would not be detectable
with PAM40, but could easily be seen, if the similar domain were longer than 120 residues, withPAM250
(the alignment would be even more significant, however, withPAM180, which should be optimal for the
evolutionary distance).

If scoring matrix entriessi j are thought of as “log-odds” ratios, we still do not know what the “odds”
are unless we know the base for the logarithm. Thus, Dayhoff (1978) used log10, then multiplied each of
those values by 10 and rounded to integers, with the result that 10 log10

qi j

pi p j
= log2

qi j

pi p j
/3; thusPAM250

values are sometimes described as scaled to 1/3 bit units.3 Indeed, scalingsi j by 10, or 20, or even 100
will not change the length of the alignment, its relative ranking in a database search, or its statistical
significance as long as all scores are calculated with the samesi j (and the gap penalties are scaled appro-
priately as well). Thus, a raw similarity scoreS= 100 tells us nothing about the significance of a match;

3Unfortunately,BLOSUM62 si j are scaled in 1/2-bit units, butBLOSUM50 is scaled in 1/3-bit units. As a result, a gap-penalty
of −12 for the first residue in a gap and−2 for each additional residue, which is commonly used for 1/3-bit matrices, is too
high for f rac12-bit matrices; which should use−8,−1 or−8,−2.
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Figure 16: Similarity scores and library sequence length
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The distribution of Smith-Waterman similarity scores is plotted as a function of log(n), n is the length of
the library sequence. Filled symbols indicate individual related sequences (only the most distant related
sequences are shown); open symbols show the average and std. error of similarity scores for unrelated
sequences.

one must also know the scoring matrix and its “scale”, or, more specifically, itsλ, or describe the score in
terms of the number of standard deviations above the mean for sequences of that size. Current versions
of theblast2 andfasta3 programs report scores in terms ofbits, whereoSbit = (λSraw− lnK)/ ln2.
Thus, substituting in equation 3:

E(Sbit) = mn2−Sbit =
mn
2Sbit

(4)

For ungapped alignments,λ andK can be calculated analytically (Karlin & Altschul, 1990). For align-
ments with gaps, they must be estimated.
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Table 13: Search Algorithms and Statistical Significance

algorithm closely related distantly unrelated
related related

dopamine D2a thromboxane A2b cAMP-1c cytochrome oxidased

Smith-Waterman 4×10−8 0.00016 0.058 3.8
PRSSe 2.6×10−8 0.0012 0.046 28
PRSS(window=20)e 6.0×10−6 0.91 10 330

fasta,ktup=1, opt 2.6×10−7 0.00026 0.067 3.3
fasta,ktup=2, opt 0.00012 0.00026 > 10 2.3
BLASTP2.0 3×10−10 0.19 > 10.0 > 10.0

aD2DR HUMAN, bTA2R HUMAN, cCAR4 DICDI, dAPPCECOLI

Expected number of times that a similarity score as high or higher than that obtained by the indicated
library sequence would be obtained by chance in a search of Swiss-Prot (≈ 100,000 entries) with the
OPSDHUMAN (human opsin) query sequence.eExpected times this score would be obtained after
100,000 shuffles of the indicated library sequence with either global (prss) or local (window=20) amino
acid exchanges.

3.3 Empirical statistics for alignments with gaps

The normalization in equation 1 shows that scores for alignments without gaps between random se-
quences increase as lnKmn, or sinceK andm are fixed for a given search, lnn, the length of the library
sequence. This is seen empirically with scores for alignments that contain gaps (Collinset al., 1988;
Mott, 1992) and is shown in Fig. 16. For local similarities, the variance of the score should be in-
dependent of library sequence length. Thus, normalization of similarity scores by fitting a line to the
relationship of similarity score to lnn will reduce the scores of long, unrelated sequences, and make it
possible to detect more distant relationships (Pearson, 1995).

Accurate statistical estimates for alignments with gaps can can be calculated by normalizing simi-
larity scores to remove the lnn dependence for similarity scores. This can be seen in Fig. 6, where the
‘*’s show the fit of an extreme value distribution to the observed data (‘==’). FASTA and SSEARCH
estimate statistical significance by fitting a line toSvs lnn and calculating the average variance for the
scores. The regression line and variance are used to calculate

Z−score= (S− (a+blnn))/
√

var (5)

The distribution ofZ−score’s should follow the extreme value distribution, so that:

P(Z> x) = 1−exp(−e−1.282Z−0.5772) (6)

and, as before,E(Z> x) = PD.
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3.4 Statistical significance by random shuffling

Statistical estimates derived from database searches measure the difference between an observed similar-
ity score and that expected for a sequence with the amino acid composition of the database. Such tests
may overestimate significance in cases where the query sequence’s amino acid composition differs from
that of the database. Thus, membrane proteins with their hydrophobic transmembrane domains may have
statistically significant scores with non-homologous membrane proteins. A more challenging test com-
pares the similarity score between a query and library sequence with the distribution of scores obtained
by comparing the query sequence to random sequences with the same length and amino acid composition
as the library sequence. Such sequences are easily generated by randomly shuffling the library sequence,
either globally, by exchanging randomly each amino acid with any other position in the sequence, or
locally, by performing the exchanges within a window of 10–20 residues. Because this Monte Carlo
test measures the significance of the order of the two amino acid sequences, rather than the difference
between the highest scoring sequences and the rest of the database, it tends to be more demanding.

As before, similarity scores for random sequences should follow the extreme value distribution, and
a fit of the distribution of scores can be used to estimate the significance of an unshuffled score. However,
to extrapolate an expectation value from shuffled sequences to that for a library search, the “E()-value”
must be multiplied by the ratio of the number of sequences in the library to the number of shuffled
sequences. Thus, in the example below, an E()-value from 500 shuffles must be multiplied by 80 to be
comparable to an E()-value from the 40,000 entry Swiss-Prot. As expected, the E()-value from the actual
search—2×10−4—is slightly more significant than that from the shuffled distribution—3×10−3.

Comparison of OOHU (human opsin) with TA2R_HUMAN (thromboxane A2 receptor)
(shuffled) MLE statistics: Lambda= 0.1476; K=0.01206
Smith-Waterman (3.39 May 2001) function [BL50 matrix (15:-5)], open/ext: -10/-2
PRSS34 - 1000 shuffles; uniform shuffle
unshuffled s-w score: 173; bits(s=173|n_l=369): 43.2 p(173) < 1.25774e-08

For 1000 sequences, a score >= 173 is expected 1.258e-05 times

Although accurate statistical estimates can be very valuable in interpreting the results of similarity
searches, they must be evaluated with caution. Distantly related homologous sequences often do not
share statistically significant similarity. Thus, overreliance on statistical estimates, particularly after a
single search, can miss genuine homologies. Conversely, sequences with low-complexity regions often
share significant similarity but are not homologous. Finally, some structures, such as the coiled-coil
structure in tropomyosin, share statistical significance because of a common repeated structure, because
of convergence (analogy), rather than homology.

4 Identifying distantly related protein sequences

In this section, we will examine similarity searches in three diverse families of protein sequences, ser-
ine proteases, glutathione S-transferases, and the G-protein-coupled receptors. The serine proteases are
considered because they provide a classic example of a family of proteins with a highly conserved active
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Figure 17: Patterns for serine proteases

ID TRYPSIN_HIS; PATTERN.
AC PS00134;
DE Serine proteases, trypsin family, histidine active site.
PA [LIVM]-[ST]-A-[STAG]-H-C.
NR /TOTAL=158(158); /POSITIVE=154(154); /UNKNOWN=2(2); /FALSE_POS=2(2);
NR /FALSE_NEG=11(11);
CC /TAXO-RANGE=??EP?; /MAX-REPEAT=1;
CC /SITE=5,active_site;

ID TRYPSIN_SER; PATTERN.
AC PS00135;
DE Serine proteases, trypsin family, serine active site.
PA G-D-S-G-G.
NR /TOTAL=160(160); /POSITIVE=151(151); /UNKNOWN=1(1); /FALSE_POS=8(8);
NR /FALSE_NEG=16(16);
CC /TAXO-RANGE=??EP?; /MAX-REPEAT=1;
CC /SITE=3,active_site;

Patterns from PROSITE that identify 152/163 (TRYPSIN HIS or 143/159TRYPSIN SER members of the
serine protease protein family.

site; the glutathione transferases are a very diverse family where many members do not share significant
similarity with all other members, while the G-protein-coupled receptors are a very large and diverse
family of membrane proteins.

4.1 Serine proteases

Serine proteases cleave peptide bonds using a “catalytic triad” of histidine, serine, and aspartic acid;
these residues are underlined in Fig. 19. Because these residues are so highly conserved, patterns that
focus on two of the regions (Fig. 17) can be used to identify every member of the serine protease family.
Fig. 18 shows the highest scoring unnormalized similarity scores. As is often the case for divergent
protein families, several members of the family do not share statistically significant similarity with bovine
trypsin. These sequences are italicized in Fig. 18; their membership in the serine protease family is based
on common three-dimensional structures. As expected from the discussion in section 16, several of the
highest scoring unrelated sequences are substantially longer than genuine serine proteases. These scores
have much higher (less significant) expectation values when the lnn correction is used.

The absolute conservation of residues in the “catalytic triad” might suggest that similarities between
members of this family are limited to those regions. This is not the case, as can be seen in Fig. 19.
Similarity in the serine proteases typically extends from one end of the protein to the other, with strong
conservation throughout the sequence. Indeed, the region around one of the residues in the catalytic
triad—the apartic acid—is not well conserved. While the residues in the catalytic triad is an essential
feature of serine proteases, the serine protease fold (two domains containing anti-parallelβ-barrels) are
required to bring these residues together.
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Figure 18: Serine protease search - high scoring sequences

LOCUS Description len score E(12,000)

TRBOTR trypsin precursor - bovine 229 1559 10−97

TRRT2 trypsin II precursor - rat 246 1240 10−76

KQHU tissue kallikrein precursor - 262 669 10−37

NGMSG 7S NGF gamma chain I 237 645 10−36

KQRTTN tonin - rat 235 623 10−34

KYBOA chymotrypsin A precursor - bovine 245 609 10−34

PLHU plasmin precursor - human 790 580 10−31

TRFF trypsin-like proteinase 256 579 10−31

KFHU coagulation factor IXa 461 578 10−31

ELRT2 pancreatic elastase II 271 559 10−30

KYBOB chymotrypsin B precursor - bovine 245 556 10−30

KFHU1 coagulation factor XIa 625 547 10−29

WMMS28 complement factor D homolog 259 541 10−29

EXBO coagulation factor Xa 492 518 10−27

DBHU complement factor D 246 517 10−27

KXBO protein C (activated) 456 515 10−27

UKHU u-plasminogen activator precu 431 507 10−26

TBHU thrombin precursor - human (fr 615 472 10−24

TRSMG trypsin - Streptomyces griseus 221 409 10−20

C1HURB complement subcomponent C1r p 705 356 10−16

HPHU1 haptoglobin-1 precursor - human 347 335 10−15

TRPGAZ azurocidin - pig 219 316 10−14

HPRT haptoglobin - rat (fragments) 297 289 10−12

C2HU complement C2 - human 752 198 10−6

BBHU complement factor B - human 739 169 0.00014
KXBOZ protein Z - bovine 396 142 0.0041
TRYXB4 alpha-lytic proteinase 396 107 0.83

OKBY8W probable protein kinase YCR008W 603 107 1.3
RRIHM2 RNA-directed RNA polymerase 4488 99 37
IJFFTM cadherin-related tumor suppressor 5147 99 42
GNNYE7 genome polyprot. - enterovirus 70 2194 98 20
VGIHHC E2 glycoprotein - coronavirus 1173 96 14
QRRBVD VLDL receptor - rabbit 873 96 10
PRSMBG* proteinase B - S. griseus 185 96 1.9
MMMSB2 laminin chain B2 precursor - mouse 1607 95 23
RERTK renin precursor - rat 402 94 6.0
MMMSA laminin chain A - mouse 3084 93 61
LNRZ lectin precursor - rice 227 90 6.0
PRSMAG* proteinase A - S. griseus 182 89 5.5
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Figure 19: Alignment of serine proteases

TRSMG trypsin (EC 3.4.21.4) precursor - Streptomyces griseus (259 aa)
Smith-Waterman score: 385; 33.6% identity in 247 aa overlap

10 20 30 40
KYBOA CGVPAIQPVLSGLSR--IVNGEEAVPGSWPWQVSLQDKTGFHFCGGSLINE

: ..::: .. . .:.: .:. : .:..: :. : :::.: .
TRSMG MKHFLRALKRCSVAVATVAIAVVGLQPVTASAAPNPVVGGTRAAQGEFPFMVRLS--MG---CGGALYAQ

10 20 30 40 50 60

50 60 70 80 90 100 110
KYBOA NWVVTAAHC----GVTTSDVVVAGEFDQGSSSEKIQKLKIAKVFKNSKYNSLTINNDITLLKLSTAASFS

. :.::::: : .:: ....: : ::: :.. .::.. ::. ..: .:.:: : ..
TRSMG DIVLTAAHCVSGSGNNTSITATGGVVDLQSSSA--VKVRSTKVLQAPGYNGT--GKDWALIKL--AQPIN

70 80 90 100 110 120

120 130 140 150 160 170 180
KYBOA QTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNANTPDRLQQASLPLLSNTNCKKYWGTK-IKDAMICAG

: . . .: . :: :. ::: .: ... : .:..:..:.. :.. .:.. . . ::::
TRSMG QPTLKIATTTA---YNQGTFTVA-GWGANR-EGGSQQRYLLKANVPFVSDAACRSAYGNELVANEEICAG

130 140 150 160 170 180 190

190 200 210 220 230 240
KYBOA ---ASGVSSCMGDSGGPLVCKKNG-AWTLVGIVSWGSSTCSTSTPGVYARVTALVNWVQQTLAAN

..::..:.::::::. : :. : ::::::: . . ::::..:..... .
TRSMG YPDTGGVDTCQGDSGGPMFRKDNADEWIQVGIVSWGYGCARPGYPGVYTEVSTFASAIASAARTL

200 210 220 230 240 250

The requirement for a common folded structure in homologous proteins usually causes similarities to
extend from one end of the protein to the other, or for mosaic proteins, from one end of a domain to the
other. Fig. 20 displays the locally similar regions for the related and unrelated in Table 18; the highest
scoring unrelated sequences tend to have relatively short (< 100 residue) regions of higher similarity (≈
30% identical) while related sequences have longer (140–400), though sometimes lower (25%) similarity.
In general, shorter, higher similarities are less significant than longer, lower similarities.
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Figure 20: Serine protease alignments

TRBOTR 1559 100.0 -------------------------------------------------
TRRT2 1240 74.7 -------------------------------------------------
TRDFS 1070 66.5 -------------------------------------------------
KQHU 669 41.5 ------------------------------------------------
NGMSG 665 39.7 ------------------------------------------------
KQRTTN 623 40.9 ------------------------------------------------
KYBOA 609 42.1 ------------------------------------------------
PLHU 580 39.7 ------------------------------------------------
TRFF 579 42.1 ------------------------------------------------
KFHU 578 40.9 -------------------------------------------------
KYRTB 564 39.5 ------------------------------------------------
ELRT2 559 38.1 -------------------------------------------------
KYBOB 556 37.8 ------------------------------------------------
KFHU1 547 37.6 -----------------------------------------------
WMMS28 541 35.7 ------------------------------------------------
EXBO 518 39.4 ------------------------------------------------
DBHU 517 34.1 ------------------------------------------------
KXBO 515 37.3 -----------------------------------------------
UKHU 507 37.0 ------------------------------------------------
TBHU 472 35.8 ------------------------------------------------
TRSMG 409 35.3 -----------------------------------------------
C1HURB 356 30.4 -------------------------------------------------
HPHU1 335 28.1 ------------------------------------------------
TRPGAZ 316 30.0 ------------------------------------------------
HPRT 289 26.0 -------------------------------------------------
C2HU 198 25.7 -------------------------------------------
BBHU 169 25.1 -----------------------------------------
KXBOZ 142 25.2 ---------------------------------------------
TRYXB4 107 21.5 -------------------------------------------
OKBY8W 107 33.3 -----------------------
RRIHM2 99 25.9 ------------------------------
IJFFTM 99 27.0 ---------------------------
GNNYE7 98 29.9 -----------------
VGIHHC 96 29.8 -------------------------------
QRRBVD 96 25.2 -----------------------
PRSMBG* 96 24.9 --------------------------------------
MMMSB2 95 25.3 --------------------
RERTK 94 23.8 --------------------------------
MMMSA 93 25.6 -----------------------
LNRZ 90 26.1 -----------------------
PRSMAG* 89 25.3 ----------------------------------
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Table 14: Glutathione S-transferases

The best scores are: s-w bits E(96,308)

GTM1 MOUSE Glutathione S-transferase GT8.7 1490 366 10−101

GTM1 RAT Glutathione S-transferase YB1 1406 346 10−94

GTM1 HUMAN Glutathione S-transferase 1235 305 10−82

GTM2 CHICK Glutathione S-transferase 2 954 237 10−62

GTP1MOUSE Glutathione S-transferase P 361 93 10−18

GTA1 MOUSE Glutathione S-transferase GT41A 218 61 10−9

SC2OCTDO S-crystallin 2 (OL2). 224 61 10−9

GTA2 MOUSE Glutathione S-transferase Ya 229 59 10−8

GTC MOUSE Glutathione S-transferase Yc 215 58 10−8

GTA1 HUMAN Glutathione S-transferase A1-1 206 56 10−7

GT28 SCHHA Glutathione S-transferase 28 kd 203 55 10−7

GTA4 MOUSE Glutathione S-transferase GST 5.7 183 50 10−5

GT28 SCHJA Glutathione S-transferase 28 kd 169 47 10−4

GTS2DROME Glutathione S-transferase 2 164 46 10−4

SC1OCTVU S-crystallin 1. 159 45 10−4

GTA2 CHICK Glutathione S-transferase, CL-3. 144 43 0.00054
SC18OMMSL S-crystallin SL18. 131 39 0.016
GTT1 MUSDO Glutathione S-transferase 1 122 0.055
GTH1 MAIZE Glutathione S-transferase I 120 0.056
GTXA TOBAC Auxin-regulated protein 117 34 0.220
GT32 MAIZE Glutathione S-transferase III 115 34 0.31
GTT1 DROME Glutathione S-transferase 1-1 100 30 3.5
GTH1 WHEAT Glutathione S-transferase 1 98 30 5.4
GT PROMI Glutathione S-transferase GST-6.0 97 30 5.5
VP2 AHSV3 Outer capsid protein (1057) 108 32 6.8
DCMA METSP Dichloromethane dehalogenase 98 30 7.2
SLTHAEIN putative transglycosylase ( 593) 103 31 7.6
GTY2 ISSOR Glutathione S-transferase Y-2 94 29 8.4
MOD5 YEAST tRNA isopentenyltransferase 100 30 8.9
GTX2 TOBAC Auxin-induced PGNT35/PCNT111. 93 29 12
GTT1 RAT Glutathione S-transferase 5 93 29 13
SPCBHUMAN Spectrin beta chain, erythrocyt (2137) 108 31 16
DAPF YERPE Diaminopimelate epimerase 90 28 17
LIGE PSEPA β-etherase 91 28 22
EF1GHUMAN Elongation factor 1γ 94 29 23

All of the unitalicized sequences are known to be members of the glutathione transferase family.
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4.2 Glutathione S-transferases

The glutathione transferase family of enzymes is a very diverse family of proteins found, in various
forms, in animals, plants, and prokaryotes. Fortunately, many of the members of this family have a
common enzyme activity so that they can be recognized by name. Table 14 shows that for this family,
there are many homologues that do not show significant similarity when the database is searched with a
single query sequence.

Frequently, clear identification of a distant homology will require several database searches, with
either different algorithms or additional query sequences. For example, in Table 14, one might wish
to test the possibility that glutathione S-transferases share homology with elongation factors, which are
among the high scoring sequences. The result of a search usingEF1G HUMAN is shown in Table 15. Here,
there is a clear relationship between this elongation factor and the class-theta glutathione transferases.
An additional search with a class-theta sequence reveals the most distant relationships in this family more
clearly.

Table 15: Distant glutathione transferase homologs

Re-search with LIGEPSEPA

The best scores are: s-w bits E(100,225)

LIGE PSEPA β-etherase 1993 477 10−134

GTZ1 DIACA Glutathione S-transferase 1 170 46 10−4

GTX6 SOYBN Probable glutathione S-transferase 168 46 10−4

GTX3 TOBAC Probable glutathione S-transferase 165 45 10−4

GTXA ARATH Glutathione S-transferase 161 44 0.00056
GTX2 TOBAC Probable glutathione S-transferase 157 43 0.00031
GTX1 SOLTU Probable glutathione S-transferase 149 41 0.002
GTX1 TOBAC Probable glutathione S-transferase 147 41 0.0028

Re-search with EF1GHUMAN

The best scores are: s-w bits E(100,225)

EF1GHUMAN Elongation factor 1γ (EF-1γ) 2977 634 10−181

EF1GXENLA Elongation factor 1γ (EF-1γ) 2370 506 10−143

EF1H YEAST Elongation factor 1γ 2 (EF-1γ) 769 169 10−41

EF1GTRYCR Elongation factor 1γ (EF-1γ) 715 158 10−37

SYV HUMAN valyl-tRNA synthetase 440 101 10−20

GTH1 MAIZE Glutathione S-transferase I 222 56 10−7

GTH3 MAIZE Glutathione S-transferase III 193 49 10−5

GTH1 WHEAT Glutathione S-transferase 1 186 47 10−4

GTH1 TOBAC Glutathione S-transferase 184 46 10−4

GTY2 ISSOR Glutathione S-transferase Y-2 175 45 0.00021
GTH2 WHEAT Glutathione S-transferase 2 175 44 0.00062
GTX6 SOYBN Probable glutathione S-trans. 171 43 0.00082
GTH2 TOBAC Glutathione S-transferase 169 43 0.001
GTT1 DROME Glutathione S-transferase 1-1 162 42 0.0028
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Figure 21: G-protein-coupled receptors
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4.3 G-protein-coupled receptors

The G-protein-coupled receptors (GCRs) are one of the largest known gene families; members of the
family transduce signals from light, peptides, cationic amines, lipid mediators, odors, and many more
small molecules. An evolutionary tree that summarizes the diversity of this family is shown in Fig. 21.
Based on hydrophobicity plots and the structure of bacteriorhodopsin (a protein that does not share sig-
nificant similarity with members of this family), the GCRs are thought to contain seven transmembrane
domains, so that the N-terminus of the proteins is extracellular, while the C-terminus is intracellular.

Because GCRs have transmembrane domains, the highest scoring unrelated sequences are frequently
other membrane proteins. Table 16 lists sequences from Swiss-Prot that have marginally significant
matches with a human opsin sequence (there are more than 500 related sequences with expectations
ranging from 0–0.01 that are not shown). As with most divergent families, the question becomes, “how
do I know that XXX is/is not a GCR?” This is more difficult with the GCRs, because they have long

43



Table 16: GCRs distant from human opsin

The best scores are: s-w bits E(100,225)

MC3R RAT melanocortin-3 receptor 140 38 0.034
MC3R MOUSE melanocortin-3 receptor 139 38 0.039
OLF6 CHICK olfactory receptor-like protein 139 38 0.044
ML1A XENLA melatonin receptor type 1A 133 37 0.048
GU27 RAT gustatory receptor GUST27 137 38 0.051
AG2T RAT type-1C angiotensin II receptor 132 36 0.064
OLF2 RAT olfactory receptor-like protein F12 135 37 0.07
MAS MOUSE MAS proto-oncogene 133 37 0.097
PAFR MACMU platelet activating factor receptor 130 36 0.1
MAS RAT MAS proto-oncogene. 131 36 0.13
OLF2 CHICK olfactory receptor-like protein C 129 36 0.17
CAR1 DICDI cyclic AMP receptor 1 130 36 0.18
YS96 CAEEL hypothetical 110.4 KD protein 133 36 0.26
5H2A CAVPO 5-hydroxytryptamine 2A receptor ( 121 34 0.46
PE24RAT prostaglandin E2 receptor EP4 124 35 0.55
CAR3 DICDI cyclic AMP receptor 3 124 35 0.56
OLF4 CHICK olfactory receptor-like protein c 121 34 0.58
ML1B RAT melatonin receptor type 1B 115 33 0.59
UL33 HSV7J G-protein coupled receptor homolog U12 121 34 0.63
OLF5 CHICK olfactory receptor-like protein C 120 34 0.67
MAS HUMAN MAS proto-oncogene. 120 34 0.7
NU2M CHOCR NADH-ubiquinone oxidoreductase chain 2122 34 0.76
PE24HUMAN prostaglandin E2 receptor EP4 120 34 1
OLF1 CHICK olfactory receptor-like protein C 117 33 1.1

variable length loops in both their extracellular and intracellular domains.

As before, two strategies can be used to evaluate the hypothesis of homology: re-searching the library
and statistical significance from shuffling. A search of the Swiss-Prot database reveals thatMAS HUMAN
shares significant similarity (E(58,500)< 0.01) with 205 GCRs; 100 additional scores with less statisti-
cal significance also belong to the GCR family before the first non-GCR is encountered. In contrast, the
highest ranking scores from theNU2M CHOCR are (more than 100 NADH oxidoreductase sequences are
not shown):
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The best scores are: s-w bits E(100,225)
NU2M_CHOCR NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 497) 3181 531 3.3e-150
NUON_RHOCA NADH DEHYDROGENASE I CHAIN N (EC 1.6.5. ( 478) 928 162 3.1e-39
NU2C_MARPO NADH-PLASTOQUINONE OXIDOREDUCTASE CHAIN ( 501) 827 146 3e-34
NU2M_PODAN NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 556) 788 140 2.8e-32
NU2M_ANOGA NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 341) 460 86 2.7e-16
NU2M_RAT NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 (E ( 345) 393 75 5.4e-13
NU2M_CROLA NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 348) 312 61 5.3e-09
NU5M_XENLA NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 ( 604) 230 48 9.1e-05
NDHF_BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5. ( 505) 190 42 0.0074
COX1_PECMA CYTOCHROME C OXIDASE POLYPEPTIDE I ( 549) 172 38 0.054
COX1_LEITA CYTOCHROME C OXIDASE POLYPEPTIDE I ( 549) 154 36 0.47
CCMF_RHIME CYTOCHROME C-TYPE BIOGENESIS PROTEIN CY ( 676) 153 36 0.62
Y825_HAEIN HYPOTHETICAL PROTEIN HI0825. ( 244) 145 34 0.67
RFBX_SALTY RFBX PROTEIN. ( 430) 148 35 0.76
ATP6_OENBE ATP SYNTHASE A CHAIN (EC 3.6.1.34) ( 281) 141 33 1.2
YM04_PARTE HYPOTHETICAL 18.8 KD PROTEIN (ORF4). ( 156) 135 32 1.5
YC43_ODOSI HYPOTHETICAL 30.1 KD PROTEIN YCF43 (ORF ( 263) 138 33 1.6
NU4M_ANOAR NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 4 ( 266) 135 32 1.9
COP_CLOPE COPY NUMBER PROTEIN (ORF4). ( 198) 134 32 2
YJG2_YEAST HYPOTHETICAL 94.9 KD PROTEIN IN MRPL8-N ( 830) 143 34 2.3
CAPE_STAAU CAPE PROTEIN. ( 440) 138 33 2.4
OPSD_MOUSE RHODOPSIN. ( 348) 134 32 3.1

The results from theMAS HUMAN andNU2M CHOCR, which show thatMAS HUMAN is clearly a member
of the GCR family, contrast with the statistical significance calculated with thePRSS program. Com-
paring theOOHU with RTA RAT score with the distribution of scores calculated after shufflingRTA RAT
1000 times with a local window of 20 suggests that the unshuffled score (109 ) is expected 6 times in
1000 shuffles. In contrast, theNU2M CHOCR score is expected only 1.7 times in 1000 shuffles. From this
perspective, theNU2M CHOCR score is somewhat more significant, but, in fact, neither similarity score is
statistically significant. It is not untilMAS HUMAN is compared with other members of the family, e.g. the
angiotensin, fMet-Leu-Phe, thrombin, or substance-P receptors with E-values from 10−12–10−6, that the
relationship is apparent.

Table 3.3 compares the statistical significance inferred from database searches with those determined
by Monte-Carlo shuffling. As expected, the significance of the scores when compared with locally (win-
dow) shuffled sequences is 10-fold lower than the comparison with globally shuffled scores. It is unclear
how to compare the expectation from shuffles with the expectation from a search. In the table, the ex-
pectation from a search of a 43,000 entry library is compared to the expectation from 1,000 shuffles.
For global shuffles, the expectations are quite comparable while local shuffles are more conservative, yet
all but one of the similarity scores judged significant from the database search are still significant when
compared with the local-shuffle distribution.

Nevertheless, these examples show both that current statistical models for the similarity scores of
unrelated sequences are quite accurate, but also that homologous sequences frequently do not share
significant pair-wise similarity scores. Thus, a lack of statistical significance cannot be used to infer
non-homology, but strong statistical significance is a good indicator of common ancestry.

45



Figure 22: Internal duplications in calmodulin
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Comparison of human calmodulin with itself. Each diagonal line represents a potential local alignment
of calmodulin with itself. Values below the diagonal lines show the number of identities and length of
the aligned region (e.g. 33/102) and the expectation value for the similarity score of the alignment.

5 Repeated structures in proteins

So far, we have focussed on the identification and statistics of the single most significant similarity
score shared by two sequences. As can be seen in Fig. 10B, however, there are frequently several non-
overlapping local alignments with optimal similarity scores. In addition, there can be non-overlapping
sub-optimal alignments with significant scores that can be used to infer the duplication events that gave
rise to the protein sequence. An algorithm for the bestN non-overlapping local alignments was described
by (Waterman & Eggert, 1987).

Figs. 22 and 23 show a graphical plot of the local similarities within the calmodulin calcium binding
protein. Calmodulin contains four EF-hand Ca+-binding domains that are well conserved. The highest
scoring alignment in Fig. 23 aligns domainsA-B with C-D; the second highest alignsA-B-C with B-C-D;
the third alignsA with D.

A similar pattern of local similarity can be seen in Fig. 24, which shows the mosaic relationship
between the EGF-precursor and the LDL-receptor.
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Figure 23: Calmodulin internal alignments
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(A) MCHU - Calmodulin - Human, rabbit, bovine, rat, - 148 aa
(B) MCHU - Calmodulin - Human, rabbit, bovine, rat, - 148 aa
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Figure 24: Mosaic domains shared by the EGF-precursor and LDL-receptor
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Some non-homologous structures, particularly proteins containing the coiled-coil structure, have
a periodic structure that is easily seen in local similarity plots. Fig. 25 shows local similarities in
tropomyosin. All the alignments shown have local similarity scores greater than 120, and each would be
significant in a conventional database search.

6 Summary

Protein sequence comparison is the most powerful tool available today for inferring structure and function
from sequence because of the constraints of protein evolution—a protein fold into a functional structure.
Protein sequence similarity can routinely be used to infer relationships between proteins that last shared a
common ancestor 1–2.5 billion years ago. Our ability to identify distantly related proteins has improved
over the past five years with the development of accurate statistical estimates, which have provided better
normalization methods, and with the use of optimized scoring parameters. In using sequence similarity
to infer homology, one should remember:

1. Always compare protein sequences if the genes encode proteins. Protein sequence comparison
will typically double the look back time over DNA sequence comparison.

2. While most sequences that share statistically significant similarity are homologous, many distantly
related homologous sequences do not share significant homology. (Low complexity regions can
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Figure 25: Coiled-coil structures share local similarity
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display significant similarity in the absence of homology). Homologous sequences are usually
similar over an entire sequence or domain. Matches that are more than 50% identical in a 20–40
amino acid region occur frequently by chance.

3. Homologous sequences share a common ancestor, and thus a common protein fold. Depending
on the evolutionary distance and divergence path, two or more homologous sequences may have
very few absolutely conserved residues. However, if homology has been inferred betweenA and
B, betweenB andC, and betweenC andD, A andD must be homologous, even if they share no
significant similarity.

4. Similarity searching techniques can be improved either by increasing the ability of a method to
recognize distantly related sequences—increased sensitivity—or by lowering scores for unrelated
sequences—increased selectivity. Since there are generally 1000-times more unrelated than related
sequences in a sequence database, improvements that reduce the scores of unrelated sequences can
have dramatic effects. The most dramatic improvements in comparison methods recently have
used this approach.
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