
UNIT 9.4Using Relational Databases for Improved
Sequence Similarity Searching and
Large-Scale Genomic Analyses

As protein and DNA sequence databases have grown, characterizing evolutionarily related
sequences (homologs) through sequence similarity has paradoxically become a more
challenging endeavor. In the early 1990s, a similarity search might identify a dozen
homologs only once in three searches; many searches would reveal only one or two
homologs, if any. With today’s comprehensive sequence libraries, most similarity searches
will identify several dozen homologous sequences, and many searches will yield hundreds
of homologs from dozens of species. As scientifically interesting as these results may be,
they are often impractical to organize and analyze manually. Moreover, modern genome-
scale studies do 1,000 to 10,000 searches in a single analysis, producing millions of lines of
comparison results. Fortunately, relational databases (UNITS 9.1 & 9.2) can manage large sets
of search results, greatly simplifying genome-scale analyses—for example identifying
the most conserved sequences shared by two organisms, or the proteins that are found
in plants but not animals. Relational databases are designed to integrate diverse types of
information: e.g., sequence, taxonomy, similarity to other proteins, and gene location.
Relational databases can also make searches more efficient by focusing on subsets of the
protein databases—proteins found in similar organisms or with similar functions. Thus,
relational databases are not only essential for the management and analysis of large-scale
sequence analyses, but can also be used to improve the statistical significance of similarity
searches by focusing the search on subsets of sequence libraries most likely to contain
homologs, based, e.g., on taxonomy, structure, or function.

The protocols in this unit use relational databases to improve the efficiency of se-
quence similarity searching and to demonstrate various large-scale genomic analyses
of homology-related data. Basic Protocol 1 illustrates the installation and use of a simple
protein sequence database, seqdb-demo, which will be used as a basis for all the other
protocols. Basic Protocol 2 then demonstrates basic use of the seqdb-demo database
to generate a novel sequence library subset. Basic Protocol 3 shows how to extend and
use seqdb-demo for the storage of sequence similarity search results. Basic Protocols
4 to 6 make use of various kinds of stored search results to address three different aspects
of comparative genomic analysis. All of the SQL statements used in these protocols are
available in the seqdb-demo package, described in Basic Protocol 1. While many of
the SQL statements are briefly explained in each protocol, the concepts in Basic Protocols
2 to 4 will easier to understand if the reader is familiar with basic SQL (UNIT 9.2).

BASIC
PROTOCOL 1

INSTALLING AND POPULATING THE seqdb-demo RELATIONAL
DATABASE

In this protocol, a very simple protein sequence database, seqdb-demo (Fig. 9.4.1) will
be installed and then populated with data obtained from a “flat-file” sequence library. The
database includes: (1) a table for the raw sequence data; (2) a table to hold information
about the sequence, including its description and various public database accession num-
bers; and (3) tables to store taxonomic information about the organism from which the
sequence was obtained, and how those organisms are themselves related to each other.

Sequence and annotation information are loaded from a sequence library “flat file” into an
empty seqdb-demo database using the Perl program load-seqdemo.pl, found in

Contributed by Aaron J. Mackey and William R. Pearson
Current Protocols in Bioinformatics (2004) 9.4.1-9.4.25
Copyright C© 2004 by John Wiley & Sons, Inc.

Building
Biological
Databases

9.4.1

Supplement 7

Relational
Databases

9.4.2

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.1 A schema for protein sequence data. Each of the boxes represents one of the tables
in the seqdb-demo database. Sequences are stored in the protein table, their descriptions
and accession information are stored in the annot table, and taxonomic information is stored in
the taxon and taxon-name tables. The links between the tables are shown with dashed lines.
The symbols at the ends of the line indicate the type of relationship; e.g., the protein:annot
relationship is a one-to-many relationship; each protein sequence can have many descriptions or
annotations but an annotation refers to only one protein sequence. The abbreviations to the left
of the table entry names indicate whether the entry is a primary key (PK) or foreign key (FK, a
foreign key in one table is a primary key in another, and allows the information in the two tables to
be “joined”), or if the entry is indexed (IX) for rapid lookup.

theseqdb-demo.tar.gz package. Although the comprehensivenr protein sequence
library from the NCBI will be used, any FASTA-formatted database (APPENDIX 1B) can be
used, provided that descriptions follow the NCBI nonredundant DefLine format, e.g.:

>gi|15241446|ref|NP-196966.1| (NM-121466) putative protein
[Arabidopsis thaliana]̂ Agi|11281152|pir||T48635
hypothetical protein T15N1.110 -- Arabidopsis
thalianâ Agi|7573311|emb|CAB87629.1| (AL163792) putative
protein [Arabidopsis thaliana]

See ftp://ftp.ncbi.nih.gov/blast/db/blastdb.txt for further description of this specialized
FASTA sequence format.

The protocol steps below demonstrate how to extract subsets of sequences from specific
taxonomic groupings.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available for the raw data flat-files and
the MySQL sequence database files

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

Building
Biological
Databases

9.4.3

Current Protocols in Bioinformatics Supplement 7

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules. With Unix-like systems, the DBI and
DBD::mysql modules can be installed from the CPAN Perl software
repository with the following commands (typed input indicated in bold):
% perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

In some cases, it may be necessary to type force install DBD::mysql (at
the cpan prompt) if errors are encountered (generally, these errors can safely be
ignored). Under Windows-based operating systems, the ppm package
management utility should be used instead to install both the DBI and
DBD::mysql packages.

Files

The seqdb-demo package of SQL and Perl scripts for creating and maintaining a
relational database of protein sequences, downloaded from ftp://ftp.virginia.edu/
pub/fasta/CPB/seqdb demo.tar.gz. This package includes all of the utilities to
create, load, and maintain the simple protein sequence database described in
these protocols.

A FASTA-format (APPENDIX 1B) “flat-file” protein sequence library, such as
SwissProt or nr. These sequence libraries can be downloaded from
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/swissprot.gz, or nr.gz. The nr library is
more comprehensive, but the SwissProt library is a smaller, more manageable
dataset. In these protocols, the nr sequence library will be exclusively used.

Creating the seqdb demo database
1. In a Unix terminal window, traverse into the directory in which the

seqdb-demo.tar.gz package file was downloaded and execute the commands
listed below (type the text in bold to issue the command; the computer response is
in lightface and comments about the commands are written in italics).

% tar -xzvf seqdb-demo.tar.gz

Uncompresses and unpacks seqdb-demo.

% cd seqdb-demo

Changes directory into seqdb-demo.

% mysql < mysql/seqdb-demo.sql

Creates the database and its tables.

Before executing the third command, one may wish to edit the top few lines of
mysql/seqdb-demo.sql to change the user name, and password from the de-
faults (seqdb-user and seqdb-pass, respectively).

2. To confirm that the database has been created correctly (and to become familiar with
the database’s schema), type the following:

% mysql -u seqdb-user -pseqdb-pass seqdb-demo
mysql> SHOW TABLES;

Provides a listing of the tables found in this database (Fig. 9.4.2A).

Relational
Databases

9.4.4

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.2 (A) List of tables in the database created in Basic Protocol 1, step 1, retrieved
via the SHOW TABLES command. (B) Description of columns in the database, retrieved via the
DESCRIBE annot command.

mysql> DESCRIBE annot;

Gets a description of the columns in the annot table (Fig. 9.4.2B).

These commands confirm that one has successfully created the seqdb-demo database
with four tables, as described in Fig. 9.4.1. Briefly, the protein table will store raw
protein sequences and the annot table (short for “annotation”) will contain the de-
scription of the protein and any links to external public databases (SwissProt, Genpept,
PIR, TrEMBL, etc.), while the other two tables (taxon and taxon-name) will provide
taxonomic species information.

Populating the seqdb-demo database
3. To load the sequences from the nr FASTA-format sequence library, type the

following:

% gunzip /seqdata/nr.gz

Uncompresses the file.

% load-seqdb.pl /seqdata/nr

Loads the data into the database.

In these commands,/seqdata should be changed to the directory of the compressed
nr.gz file previously downloaded from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz
(see Necessary Resources, above). The load-seqdb.pl script reads every se-
quence entry from the specified sequence library, storing the sequence data in the
protein table and the header information in the annot table. For a large protein
database like nr (which in March of 2004 contained nearly 2 million entries), this
initial loading may take 6 to 12 hr.

4. To confirm that the database has successfully loaded the protein sequences and their
annotations, type (from a MySQL prompt):

Building
Biological
Databases

9.4.5

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.3 (A) Number of protein sequences loaded into database from the nr sequence library, retrieved via the
SELECT COUNT(*) FROM protein command. (B) Number of different descriptions loaded into the database from
nr, retrieved via the SELECT COUNT (*) FROM annot command. (C) Information on a single protein, retrieved via
the SELECT * FROM protein WHERE prot-id = 100 command. (D) All annotations of a protein, retrieved via the
SELECT gi, db, acc, descr command.

mysql> SELECT COUNT(*) FROM protein;

Reports the number of protein sequences (Fig. 9.4.3A).

mysql> SELECT COUNT (*) FROM annot;

Reports the number of different descriptions (Fig. 9.4.3B).

mysql> SELECT * FROM protein WHERE prot-id = 100;

Get a single protein (Fig. 9.4.3C).

mysql> SELECT gi, db, acc, descr

+> FROM annot WHERE prot-id = 100;

Get all annotations of a protein (Fig. 9.4.3D).

Because thenr database is constantly growing, results may not exactly match those above.

5. To add species taxonomic information to all of the protein sequence entries in the
database, it is necessary to download information from the NCBI Taxonomy database.
The updatetax.pl script automatically downloads this information and uses it to
load the taxonomy-related tables in the seqdb-demo database. Type the following:

% mkdir /seqdata/taxdata

Makes a new directory for NCBI Taxonomy download.

Relational
Databases

9.4.6

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.4 (A) Total number of taxa loaded from the NCBI Taxonomy database, retrieved via
the SELECT COUNT(*) FROM taxon command. (B) NCBI’s ID for human, retrieved via the FROM
taxon-name WHERE taxon-id = 9606 command.

% updatetax.pl /seqdata/taxdata

Downloads and imports the NCBI Taxonomy database.

6. To confirm that the NCBI Taxonomy database was successfully loaded into the
database, type the following commands:

mysql> SELECT COUNT(*) FROM taxon

Gets total number of taxa (Fig. 9.4.4A).

mysql> SELECT name, class

+> FROM taxon-name WHERE taxon-id = 9606

Gets NCBI’s ID for human (Fig. 9.4.4B).

Again, one may expect to see slightly different values, as the NCBI Taxonomy database
continues to grow.

BASIC
PROTOCOL 2

EXTRACTING SEQUENCES FROM seqdb-demo FOR SIMILARITY
SEARCHING TO IMPROVE HOMOLOG SEARCHING

The inference of sequence homology is based on the identification of statistically signifi-
cant sequence similarity. If an alignment between two sequences is statistically significant,
one can reliably infer that the sequences are homologous. However, if the score is not
significant, one cannot be certain the sequences are not homologous; in fact, many truly
homologous proteins (where homology is inferred by significant structural similarity) do
not share significant sequence similarity. The significance of an alignment is measured
by the expectation value E, which describes the number of alignments of similar or better
similarity that could be expected to occur by chance alone. The E value is calculated as
E = P × D, where P is the probability of seeing an alignment this good between any given
pair of sequences and D is the total number of pairwise comparisons performed during
the search. Therefore, one of the easiest ways to improve the sensitivity of a similarity
search is to search a subset of sequence libraries, reducing D and improving the signifi-
cance of all E values (nonhomologous alignments will continue to have E values ≈1.0 or
greater). This strategy is particularly effective now that many complete prokaryotic and
eukaryotic genomes and proteomes are available. For example, searching only against
the proteins predicted from a complete genome instead of the entire nr sequence library,

Building
Biological
Databases

9.4.7

Current Protocols in Bioinformatics Supplement 7

can improve the statistical significance of homologous alignments by 100 to 1000-fold,
greatly enhancing the efficiency of the search for homologs in the given organism.

In addition, by searching against specific taxonomic subsets of a sequence library, one
can tailor various scoring parameters to the evolutionary distance being considered. For
example, modern mammals shared a common ancestor only about 100 million years
ago, and so most mammalian orthologs share modestly high protein sequence identity
(70% to 85%, on average). The BLOSUM50 scoring matrix (the default for FASTA), or
BLOSUM62 scoring matrix (the default for BLAST), is “tuned” to be able to identify
distant homologs that share less than 30% identity over long regions, but in return may
not be able to reliably identify shorter homologies that have high identity. Conversely, the
PAM40 matrix is targeted to sequences that share approximately 70% identity, and thus
should be more effective at identifying and accurately aligning mammalian orthologs,
particularly those that are too short to identify using the default matrices. Gap penalties can
be similarly adjusted to be more or less forgiving, based on the approximate evolutionary
distance between library and query sequences.

There are many other motivations for wanting to search against smaller subsets of avail-
able sequences. The most general strategy for searching against a taxonomic (or other)
subset of a larger sequence database is to use the fully populated seqdb-demo database
to generate customized, FASTA-formatted sequence libraries. This protocol will demon-
strate how to generate both species-specific and clade-specific sequence database flat files
from the seqdb-demo relational database.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules

Files

Generated as in Basic Protocol 1

1. Complete Basic Protocol 1.

To generate a species-specific sequence library
2a. To generate a library of human sequences (or sequences from any other species for

which the preferred scientific name is known), create a text file (e.g., human.sql,
found in the seqdb-demo distribution) with SQL code (see UNIT 9.2) that generates
the desired sequences. In this case the SQL code would be that shown in Figure 9.4.5.

3a. Once this file has been created and saved, use it as input to the mysql client with
the following command:

Relational
Databases

9.4.8

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.5 SQL code used to generate a library of human sequences (note the space following the fourth “|” symbol).

Figure 9.4.6 FASTA-formatted human sequences, printed to human.lib.

% mysql -rN seqdb-demo < human.sql > human.lib

The –r flag tells mysql that the output should be left “raw,” so that the embedded
newline characters, \n, will be correctly interpreted; the -N flag prevents mysql from
printing any column names. Together, this command selects all human sequences
(and their preferred annotations) from the seqdb-demo database and prints them
to human.lib, already converted into FASTA format, e.g., Figure 9.4.6.

4a. The SQL command script in Figure 9.4.5 generates valid FASTA-formatted files, but
the sequence is all on one line. This can be problematic for sequence analysis tools
that read sequences line-by-line into small buffers. To reformat the database so that
sequences are on multiple lines with a maximum length of 60, the reformat.pl
Perl script is included in the seqdb-demo distribution.

% reformat.pl human.lib

To generate taxonomic subsets
The updatetax.pl script described in Basic Protocol 1 calculates additional infor-
mation (the left-id and right-id values) that can be used to select entire taxo-
nomic subgroupings of species, e.g., all mammals or all vertebrate species. These two
left-id/right-id numbers have the useful property that any descendents of a tax-
onomic node will have left-id’s (and right-id’s) that are between the left-id
and right-id range of all their parent node; this is referred to as a “nested-set” repre-
sentation of the hierarchy, and can be used to select entire hierarchical subsets without
recursion (Celko, 1999).

2b. Generate a library of mammalian sequences from seqdb-demo; to do so, create a
file (e.g., mammalia.sql, found in the seqdb-demo distribution) with the SQL
code shown in Figure 9.4.7.

3b. As in Step 3a, use this SQL script to generate the sequence library with the following
command:

% mysql -rN seqdb-demo < mammalia.sql > mammalia.lib

4b. Reformat the library as in step 4a with the following command.

% reformat.pl mammalia.lib

Building
Biological
Databases

9.4.9

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.7 SQL code used to generate a library of mammalian sequences from seqdb-demo.

To generate a BLAST-searchable taxonomic subset
The BLAST algorithms (UNITS 3.3 & 3.4) require sequence libraries to be specially formatted
and indexed to accelerate searches. The NCBI-BLAST and WU-BLAST versions use the
formatdb andxdformatutilities, respectively, to perform this reformatting. However,
the NCBI-BLAST versions provide a mechanism to specify a subset of a sequence library
(by GI numbers) without the generation of custom sequence libraries and reformatting.

5. Using the formatdb utility, reformat the nr database for use with NCBI-BLAST
programs:

% formatdb -p T -i /seqdata/nr

6. Alter the SELECT line from the SQL script (in step 3a or step 3b) to select only gi
numbers:

SELECT gi
FROM [. . .]
WHERE [. . .]

7. Execute the revised SQL:

% mysql -rN seqdb-demo < mammalia-gi.sql > mammalia.gi

8. Use thisGI list file (specified with-l) for any BLAST search against thenr sequence
library:

% blastall -p blastp -i query.fa -l mammalia.gi -d
/seqdata/nr

See UNITS 3.3 & 3.4 for further discussion of many of the commands and arguments used in
the steps above.

BASIC
PROTOCOL 3

STORING SIMILARITY SEARCH RESULTS IN seqdb-demo

Most sequence-similarity search programs produce human-readable, textual output.
While this text has important information embedded within it—sequence descriptions,
scores, alignment boundaries, etc.—it is not practical for an investigator to look at all the
results when hundreds of homologies are detected, or when thousands of independent
searches are run. To manage and make efficient use of large sets of search results, the data
must be organized and indexed for easy querying and retrieval. Furthermore, the ratio of
actual similarity and alignment data to white space and formatting text in the output is
often fairly low, making the files easy to read, but much larger than necessary. Finally,

Relational
Databases

9.4.10

Supplement 7 Current Protocols in Bioinformatics

keeping the search results in separate results files makes it more difficult to integrate search
results with other information. This protocol addresses many of these problems by storing
results from sequence similarity searches in the seqdb-demo relational database.

Every similarity-searching program—e.g., BLAST (UNITS 3.3 & 3.4), FASTA (UNIT 3.9),
SSEARCH (UNIT 3.10), or HMMER—produces somewhat different similarity and align-
ment results. Some programs produce alignments with both gaps and frameshifts, while
other programs may provide many separate alignment blocks (e.g., BLAST HSP’s). To
create a generic table structure able to store results from most similarity-search programs,
the focus of this protocol will be on the common types of data produced by these programs;
any data specific only to one algorithm will be ignored, and the BioPerl software will
be used to extract these common data. In general, the programs perform many pairwise
comparisons between one (or more) query sequence(s) and many entries in a sequence
library, reporting only the most similar (or most significant) sequence comparisons. Each
pairwise comparison produces an alignment with an associated raw score and statistical
score (usually expressed as bits), as well as an overall estimate of the alignment’s sta-
tistical significance (E value). Additionally, some alignment information, including the
boundaries in the query and library sequences, the number and position of gaps, etc., is
usually available. Finally, summary information such as percent identity and lengths of
the two sequences may be provided.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules.

The BioPerl toolkit (http://www.bioperl.org; available via CPAN, see Basic
Protocol 1) should be installed.

Files

The seqdb-demo package of SQL and Perl scripts for creating and maintaining a
relational database of protein sequences, downloaded from
ftp://ftp.virginia.edu/pub/fasta/CPB/seqdb demo.tar.gz. This package includes
all of the utilities to create, load, and maintain the simple protein sequence
database described in these protocols.

Similarity search results from FASTA (UNIT 3.8), BLAST (UNITS 3.3 & 3.4), SSEARCH
(UNIT 3.10), or HMMER

A sample set of similarity results is available from
ftp://ftp.virginia.edu/pub/fasta/CPB/ec human.results.gz to produce the file
ec-human.results.

1. Complete Basic Protocol 1.

Building
Biological
Databases

9.4.11

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.8 A schema for similarity search results. Each of the boxes represents one of the
tables used to collect alignment data in the seqdb-demo database. The search table records
the parameters of the search; search-query and search-lib record information about the
query and library sequences used for the search, and the search-hit table records the scores
and boundaries of alignments between query and library sequences. The links between tables,
primary keys (PK), and foreign keys (FK) are indicated as in Figure 9.4.1.

Extending seqdb-demo to include similarity search results
2. An SQL script, search.sql, is included in the seqdb-demo distribution to add

the tables related to sequence similarity search results:

% mysql seqdb-demo < mysql/search.sql

3. As in Basic Protocol 1, step 2, again execute SHOW TABLES and DESCRIBE
<table> statements for each of the search, search-query, search-lib,
and search-hit tables to confirm their existence in the database, and to become
familiar with them (also see Fig. 9.4.8). Briefly, for any one set of similarity results,
a single row will be stored in the search table, summarizing the search (algo-
rithm used, parameters, etc.). Each query used for the search will be stored in the
search-query table, while any library sequence reported in the search will be
stored once in the search-lib table. Information about the alignments between
any query and library sequences is stored in the search-hit table.

Importing similarity search results
4. Run the loadsearch.pl script, provided with the seqdb.demo distribution to

parse and load the sequence similarity search data (e.g., ec_human.results)
into the database:

% loadsearch.pl --format fasta --tag ecoli-vs-human \
--comment ‘E. coli vs human proteome’ < fasta.results

Similarity search results are imported into the database by parsing the raw text out-
put and entering the sequence names, scores, and boundaries into the various search-
related tables. The BioPerl toolkit provides functions for parsing BLAST, FASTA,
and HMMER text results, among others, which are easily combined with Perl DBI
database modules to store search results. The provided loadsearch.pl script from

Relational
Databases

9.4.12

Supplement 7 Current Protocols in Bioinformatics

the seqdb-demo distribution makes use of the BioPerl-based result parsers, so it the-
oretically should be able to accommodate any result formats that BioPerl can parse.
Furthermore, loadsearch.pl assumes that all query and library sequences either
(a) have the NCBI-like “DefLine” header ID found in the nr and similar flat files
(e.g., gi|123456|gb|CAA1128383.1), or (b) have a customized ID of the form
table.field|key (e.g., contig.contig-id|9876 or annot.acc|X12983)
that references a sequence obtainable via the provided table and key field. The key will be
used in the seq-id field of the search-query and search-lib tables, and either
GI or annot.acc, etc., will be used as the type.

Additionally, the FASTA-specific @C:1001 syntax for defining the coordinate offset of
the sequence (which, for this parser to work, must follow the ID) may also be included.
An example entry might look like:

Figure 9.4.9 SQL statements to confirm successful importing of results. Bold text represents
input; lightface text represents output.

Building
Biological
Databases

9.4.13

Current Protocols in Bioinformatics Supplement 7

>contig.contig-id|9876 @C:1001 Fragment of assembled
contig
ACTAGCTACGACTACGATCAGCGACTACGAGCGCGCATCGAC . . .

Finally, loadsearch.pl also assumes that if the report contains multiple results from
multiple queries, then the same library database and parameters were used in all searches
(i.e., the search table data remains constant, and the entire result set is considered as
one search execution, with multiple independent queries). The script expects to receive
the report via STDIN, and to obtain the name “tag” and any descriptive commentary via
command-line arguments.

Confirm successful result importing
5. Execute a few basic SQL statements to check that the data has been successfully

imported into the database (Fig. 9.4.9).

The result shown in Figure 9.4.9 further exemplifies the need to store similarity results in a
relational database: manually examining and evaluating over 8500 statistically significant
alignments is simply not feasible.

BASIC
PROTOCOL 4

ANALYZING SIMILARITY SEARCH RESULTS: IDENTIFYING ANCIENT
PROTEINS

Once the data from sequence similarity searches are stored in a relational database, it
becomes possible to build “genome-scale” summaries that incorporate data about thou-
sands of sequences almost as easily as reporting results from one or two searches. Once
one has saved all the results of a large-scale sequence comparison (e.g., all E. coli protein
sequences used as queries in searches against a database of human protein sequences),
comprehensive summaries of the similarities between the proteins in two genomes can
be generated with a few SQL statements. To illustrate, the authors of this unit searched
all 4,289 E. coli K12 predicted proteins against approximately 40,000 human sequences
from the nr database that are also found in the curated human IPI database, and saved
the results in a seqdb-demo database as ecoli-vs-human. It is then possible to
identify ancient genes—genes shared by human and E. coli, presumed to be present in
the last common ancestor of bacteria and man.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules.

Files

Generated as in Basic Protocols 1 and 3

1. Complete Basic Protocols 1 and 3.

Relational
Databases

9.4.14

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.10 List of highest-scoring E. coli homologs to human sequences, obtained via the commands shown in step
3 of Basic Protocol 4.

2. Once the search results are loaded (using loadsearch.pl, as described in Ba-
sic Protocol 3), a simple summary of the number of E. coli sequences that share
significant similarity to human sequences can be produced:

mysql > SELECT COUNT(DISTINCT search-hit.query-id) AS
shared
-> FROM search-hit
-> INNER JOIN search USING (search-id)
-> WHERE search.tag = ‘‘ecoli-vs-human’’
-> AND expect < 1e-6;

This query returns a count of 926 E. coli sequences.

One could also ask the opposite question, how many human proteins have a significant
match with E. coli, simply by changing theDISTINCT query-id clause toDISTINCT
lib-id.

3. In addition to knowing the numbers of matches that obtain an E value less than
1e--6, one might also like to identify the highest-scoring homologs. It is relatively
easy to identify the E. coli sequences involved in the ten most significant (i.e., lowest
E value) alignments between E. coli and human sequences:

mysql> SELECT search-hit.query-id, search-query.descr,
MIN(expect)

-> FROM search
-> INNER JOIN search-hit USING (search-id)
-> INNER JOIN search-query USING (query-id)
-> WHERE search.tag = ‘‘ecoli-vs-human’’
-> GROUP BY query-id
-> ORDER BY expect
-> LIMIT 10;

To get the listing (Fig. 9.4.10) of E. coli sequences (rather than just the count),
the COUNT (DISTINCT search-hit.query-id) clause from step 2 was
replaced with aGROUP BY query-id; both statements ensure that E. coli proteins
that match several human proteins will be counted only once.

Building
Biological
Databases

9.4.15

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.11 SQL statement to identify human sequences involved in alignments from from
step 3 of Basic Protocol 4, for a database system that allows subselects (see step 4a of Basic
Protocol 4).

4a. For database systems that allow “subselects”: It is more difficult to identify
the human sequences involved in each of these alignments because the GROUP
BY clause used in step 3 means that all the rows from search-hit that
share the same query-id have been collapsed; if one were also to request
search-hit.lib-id, from which of the collapsed rows will thelib-id come?
One might guess that the selected lib-id would be from the same row where the
value of expect is equal to MIN(expect), but, with SQL, there is nothing that
guarantees this to be true. In a database system that allows “subselects” (SQL clauses
that are themselves complete SELECT statements), one could instead do something
like what is illustrated in Figure 9.4.11. Note that in this solution, multiple rows may
be obtained for a given query, if the best hits happen to share the same expectation
value (e.g., an expect of 0).

4b. For database systems that do not allow “subselects”: Versions of MySQL prior to 4.1
lacked “subselect” capability; getting the related hit information without subselects
is a bit more complicated, but demonstrates a useful approach. A temporary interme-
diate table is first created to store the hit-id and query-id values for the rows of
interest (i.e., the hit-id corresponding to the row or rows having MIN(expect)
for each query-id). Because the aggregate functions MIN and MAX only operate
on the first numeric value found in an entry, the trick to getting valid hit-id’s is
to embed each hit-id in a string that also contains the numeric log-transformed
E value, separated by white space. One can then extract thehit-id that corresponds
to MIN(expect) [or MAX(-LOG(expect), as the case may be] from the aggre-
gate function’s result (seeancient.sql, found in theseqdb-demo distribution),
using the statement shown in Figure 9.4.12. The intermediate besthits table (Fig.
9.4.13) can now be used to retrieve only the rows of interest. For instance, the script
shown in Figure 9.4.14 produces a list of the ten best matches between E. coli and
human proteins, excluding any obvious transposase insertion sequences.

These SQL queries show that there are many very highly conserved proteins shared by
both E. coli and humans; because these genes have shared ancestry, they must have been
present in the last common ancestor of bacteria and humans.

Relational
Databases

9.4.16

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.12 SQL statement to identify human sequences involved in alignments from step 3 of
Basic Protocol 4, for versions of MySQL that do not allow subselects (see step 4b of Basic Protocol
4).

Figure 9.4.13 Intermediate besthits table produced by SQL from Figure 9.4.14.

Figure 9.4.14 Script used to produce a list of the ten best matches between E. coli and human
proteins from the intermediate besthits table shown in Figure 9.4.13.

Building
Biological
Databases

9.4.17

Current Protocols in Bioinformatics Supplement 7

BASIC
PROTOCOL 5

ANALYZING SIMILARITY SEARCH RESULTS: TAXONOMIC SUBSETS

One can generalize the genome-genome comparison from Basic Protocol 4 to determine
a taxonomic distribution (i.e., the presence or absence in a given species or taxonomic
clade) for any gene of interest. In this protocol, sequence similarity searches will be used
against a database such as that described in Basic Protocol 1, where species information
is available for each sequence. For any library sequence identified, it is possible to use
the seq-id field from the search-lib table to look up taxon-id values from
the annot table. The goal is to generate a summary table of gene counts that reflect
various taxonomic subsets, i.e., the number of genes that have homology with proteins
in Bacteria, Archaea, and Eukaryota, or only with proteins found in Bacteria (but not
Archaea or Eukaryota), or only with proteins found in Archaea, or with proteins found
in both Bacteria and Archaea but not Eukaryota, etc. Although the relational database
concepts required to generate the summary table are a bit more complex than in the
examples given elsewhere in this unit, which involve “joining” only a handful tables, the
SQL shown in this protocol demonstrates how relational databases can provide summaries
of datasets where the data must satisfy many conditions.

The data for this example come from a sequence similarity search of all 4289 E. coli K12
proteins against the entire NCBI nr database. The goal is to generate the necessary data
to create a summary table, shown in Table 9.4.1. Note that this protocol is not intended
to obtain knowledge about matches that occurred to other E. coli proteins already in the
database, only to homologs in bacterial species other than E. coli. Thus, the last line in
the table demonstrates that 355 E. coli proteins have no known homologs in any other
species.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

Table 9.4.1 Taxonomic Distribution of E. coli Homologs

Eukaryota Archaea Bacteria Totals

+ + + 893

+ − + 661

− + + 394

+ + − 0

− − + 1986

− + − 0

+ − − 0

− − − 355

1560 1289 3934 4289

Relational
Databases

9.4.18

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.15 SQL statement used to create a temporary intermediate results table to store
the taxon-id of all species in which a homolog to each query was found (see step 2 of Basic
Protocol 5). Bold text represents input; lightface text represents output.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules

Files

Generated as in Basic Protocols 1 and 3

1. Complete Basic Protocols 1 and 3.

2. Create a temporary intermediate results table to store the taxon-id of all species in
which a homolog to each query was found, using the SQL statement shown in Figure
9.4.15 (see taxcat.sql, found in the seqdb-demo distribution). For efficiency,
specify that the table should exist only in memory (remove the TYPE=HEAP clause
if the results do not fit into available memory). Having built this temp-result
table, it can now be used for every combination of desired taxonomic subsets.

3. To generate the counts for genes found in Bacteria and Eukaryota, but not Archaea,
generate a second temporary table, excludes, which contains the query-id’s
of homologs in the undesired taxonomic subsets, using the SQL statement shown in
Figure 9.4.16.

Building
Biological
Databases

9.4.19

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.16 SQL statement used to generate the temporary excludes table (see step 3 of
Basic Protocol 5). Bold text represents input; lightface text represents output.

Figure 9.4.17 SQL statement used to select the count of rows in temp-results where the
query-id appears, given the desired taxonomic subsets.

The WHERE constraint in this query is equivalent to taxon-name.name =
`Archaea'; therefore the number of records inserted (1289) is the total number of
E. coli proteins that have homologs in Archaea (regardless of what other homologies
there may be). These are the source of the column totals found at the bottom of the
summary table.

4. For eachquery-id not inexcludes, select the count of rows intemp-results
where the query-id appears, given the desired taxonomic subsets, using the SQL
statement shown in Figure 9.4.17. If that count equals the number of taxonomic
subsets, then that query-id satisfies the condition (note the HAVING clause that
enforces this behavior).

The number of rows that this query returns (661; Fig. 9.4.18) is the number of genes that
have hits against proteins in both Bacteria and Eukaryota species, but have no significant
hits against proteins from Archaea species (the +/−/+ row in Table 9.4.1). Also, by
joining the results back to the annot table, it is possible to see which genes have this
taxonomic distribution.

5. Repeat steps 3 and 4 for each taxonomic combination of interest (changing only the
names of the taxa to include, and the HAVING clause to reflect the number of taxa)
to generate the summary table. Note that the last combination (--/--/--) denotes
E. coli proteins that did not align against any other protein sequence; the value for
that row (355) is the difference between the total number of E. coli proteins used in
the search (4289) and the sum of all the other totals.

Relational
Databases

9.4.20

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.18 Table returned by the query in Figure 9.4.17. The number of rows that this query returns (661) is the
number of genes that have hits against proteins in both Bacteria and Eukaryota species, but have no significant hits
against proteins from Archaea species.

BASIC
PROTOCOL 6

ANALYZING SIMILARITY SEARCH RESULTS: INTERGENIC REGIONS

While ab initio gene prediction is difficult in eukaryotes (and can be difficult for prokary-
otes with sequencing errors), many genes are easily identifiable by homology to known
protein sequences. However, comparing complete genomic DNA sequences against the
entire nr protein database is time consuming. Gene finding by homology can be much
more efficient if one only searches against protein sequences from closely related or-
ganisms. Having identified the “low-hanging fruit,” remaining stretches of intergenic
sequence can be searched against a larger database. This approach is both more sensitive
and faster, because a smaller database is used in the initial search, and fewer comparisons
are made overall. Here, a two-step search strategy will be described, which could also be
extended over multiple iterations using subsequent nested taxonomic subsets.

First, a taxonomic subset of proteins are selected that share homology with most of the
genes in the target organism. For example, to identify genes in E. coli, one might search
against the approximately 45,000 proteins from the parental family Enterobacteriaceae.
The choice depends on the evolutionary distance to organisms with comprehensive pro-
tein data: for the puffer fish (Fugu rubripes), the parent order Tetraodontiformes includes
only about 700 protein sequences; the parent class Actinopterygii (ray-finned fishes)
includes approximately 16,000 protein sequences, while the parent superclass Gnathos-
tomata (jawed vertebrates) 330,000 proteins; however, species from across the superclass
have diverged over 500 million years of evolution, and these may be difficult to identify.
Next, the genomic DNA would be compared to the chosen taxonomic subset of pro-
tein sequences (using a DNA-translating search algorithm—e.g., BLASTX (UNIT 3.3) or
FASTX (UNIT 3.9)—and the search results would be stored in seqdb-demo. Then, the
next step in this process would be to identify the unmatched regions of “intergenic” DNA
sequence—i.e., subregions of search-query entries that did not produce a signifi-
cant alignment, and use only these regions to search a more complete protein set. This
protocol demonstrates how to produce intergenic regions from prior search results, using
S. typhimurium (STM) sequences searched against E. coli (ECO) proteins.

While the process of searching a new sequence library with unmatched DNA sequences
is easy to conceptualize, identifying those sequences requires several steps. Importantly,
the approach illustrated here assumes a bacterial or archaeal genome without introns—
i.e., any sequence-similarity hit can be considered a gene and any unmatched DNA as

Building
Biological
Databases

9.4.21

Current Protocols in Bioinformatics Supplement 7

intergenic (and not intronic). However, the same technique could be used in eukaryotes,
but only after exon-based alignments have been assembled into complete gene models
and the ranges of those gene models saved as search hits in the database.

Necessary Resources

Hardware

Computer with at least 2 Gb of disk space available

Software

Windows- or Unix-based operating system (including Linux or Mac OS X)
Working version of MySQL, with functional database permissions. MySQL can be

downloaded from http://www.mysql.com and installed as described in UNIT 9.2.
All interactions with MySQL databases in these protocols will be via the mysql
command-line utility.

A terminal application connected to a Unix environment in which one can execute
Unix-like commands. For Windows-based operating systems, this entails
installing the Cygwin Unix emulation (http://www.cygwin.com).

The Perl scripting language interpreter (any version since 5.005 03) and the DBI,
and DBD::mysql modules.

Files

Generated as in Basic Protocols 1 and 3

1. Complete Basic Protocols 1 and 3.

A sample set of similarity results is available from ftp://ftp.virginia.edu/pub/fasta/
CPB/stm eco.results.gz. This file must be uncompressed with the command gunzip
stm-eco.results.gz to produce the file stm-eco.results, which can then be
loaded into the database with the loadsearch.pl command.

2. Build a temporary table that contains the ranges of the successful hits using the SQL
statement shown in Figure 9.4.19 (see ranges.sql, found in the seqdb-demo
distribution). Note that it is not possible to declare this table as TEMPORARY because
it is later going to be joined against itself).

3. For each set of hits A that have the same beginning on the same DNA sequence, pair
them with all hits B on the same DNA sequence that begin after any of the A hits
end. Take the max of the endings of A as the beginning of an intergenic range; from
all the B’s, choose the smallest begin as the end of the intergenic range. Use the SQL
statement shown in Figure 9.4.20.

Figure 9.4.19 SQL statement used to build a temporary table that contains the ranges of the
successful hits, used in step 2 of Basic Protocol 6.

Relational
Databases

9.4.22

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.20 SQL statement used in step 3 of Basic Protocol 6, which contains an initial set of
intergenic ranges for each query-id.

Figure 9.4.21 Two SQL statements used for adding the missed classes of beginning and ending
“intergenic” DNA sequence to the igranges table (see step 4 of Basic Protocol 6).

4. The SELECT statement used in step 2 (Fig. 9.4.20) missed two important classes of
“intergenic” DNA sequence: the range from the beginning of the DNA sequence to
the first hit, and the range from the last hit to the end of the DNA sequence. The two
SQL statements in Figure 9.4.21 add those ranges to the igranges table.

5. Finally, it is desirable to add any DNA sequence queries that did not match against
anything (and thus have no rows in the hitranges table), using the SQL state-
ment in Figure 9.4.22. This must be done in two steps because it is not possible to
simultaneously SELECT from a table into which one is also INSERT-ing.

6. What remains is to clean the igranges table of a few sources of artifactually
overlapping ranges. The first is caused when a collection of hits look like the diagram
shown in Figure 9.4.23A, leading to two igrange’s as shown in Figure 9.4.23B.
Only the lowermostigrange, marked by the arrow, is desired. The unwanted longer
range is removed by grouping the igrange’s on end and selecting MAX(begin)
as the new boundary:

CREATE TEMPORARY TABLE clean-igranges TYPE=HEAP
SELECT query-id, MAX(begin) AS begin, end
FROM igranges
GROUP BY query-id, end;

Building
Biological
Databases

9.4.23

Current Protocols in Bioinformatics Supplement 7

Figure 9.4.22 SQL statement to add any DNA sequence queries that did not match against
anything and that have no rows in the hitranges table (see step 5 of Basic Protocol 6).

Figure 9.4.23 Schematic illustration of one possible source of artifactually overlapping ranges; the collection of hits in
(A) lead to two igrange’s as shown in (B). Only the lowermost igrange, marked by the caret, is desired. See step 6 of
Basic Protocol 6.

Figure 9.4.24 Schematic illustration of a second possible source of artifactually overlapping ranges: (A) the begin and
end of two small hits are spanned by a third, larger hit, leading to the ranges shown in (B).

7. The second set of artifactual overlap ranges stems from hits where the begin and
end of two small hits are spanned by a third, larger hit as shown in Figure 9.4.24A,
leading to the ranges shown in Figure 9.4.24B. The unwanted ranges are eliminated
by checking to see if any of the ranges overlap within the original set of hits using
the SQL statement in Figure 9.4.25; any that do are not selected into the final set of
intergenic ranges.

The final-igranges table now contains the intergenic regions. These regions could
be used as the basis for queries in a subsequent search of a larger taxonomic subset
of protein sequences; the above process can then be repeated for each new subset of
intergenic regions.

Relational
Databases

9.4.24

Supplement 7 Current Protocols in Bioinformatics

Figure 9.4.25 SQL statement for eliminating unwanted ranges from the final set of intergenic
ranges.

COMMENTARY

Background Information
Relational databases provide a powerful

and flexible foundation for large-scale se-
quence comparison, and make it much easier
to implement the “management controls” nec-
essary to keep track of sequences, alignment
positions, and scores. The seqdb-demo
database and the accompanying Basic Proto-
cols in this unit are meant to serve as examples
of the many ways that relational databases can
simplify genome-scale analyses in an investi-
gator’s research.

These protocols use relational databases
and SQL to provide comprehensive summaries
of large-scale sequence comparisons. To pro-
vide relatively compact examples, the authors
have focused on evolutionary analyses, e.g.,
the number of homologs that are shared be-
tween different taxonomic classes. The power
of relational approaches greatly increases as
additional data are added to the database. In
addition to sequence and taxonomic data, re-
lational databases can store information about
protein families and domains (e.g., PFAM)
or protein functional assignments (the Gene
Ontology or GO classification). Relational
databases are particularly powerful when they
are used to associate different kinds of data;

for example, one might ask how often homol-
ogous proteins (proteins that share statistically
significant similarity) are distant in the GO
hierarchy and thus are likely to have differ-
ent functions. As biological databases become
more diverse, including not only sequence data
but also genome locations, biological func-
tion, interaction results, and biological path-
ways, SQL databases provide powerful tools
for exploring relationships between very dif-
ferent sets of biological data on a genome
scale.

Literature Cited
Celko, J. 1999. Joe Celko’s SQL for Smarties. Mor-

gan Kaufmann, San Francisco.

Internet Resources
ftp://ftp.ncbi.nih.gov/pub/blast/db/FASTA/nr.gz

Comprehensive nr database (flat file protein se-
quence database).

ftp://ftp.ncbi.nih.gov/pub/blast/db/FASTA/
swissprot.gz

SwissProt protein database (flat file protein se-
quence database).

Building
Biological
Databases

9.4.25

Current Protocols in Bioinformatics Supplement 7

ftp://ftp.pir.georgetown.edu.pir databases/
psd/mysql/

The Protein Identification Resource (PIR) at
Georgetown University, which distributes the PIR
protein database in relational format for the MySQL
database program.

Contributed by Aaron J. Mackey and
William R. Pearson

University of Virginia
Charlottesville, Virginia

