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ABSTRACT
Motivation: No general theory guides the selection of gap
penalties for local sequence alignment. We empirically
determined the most effective gap penalties for protein
sequence similarity searches with substitution matrices
over a range of target evolutionary distances from 20 to
200 Point Accepted Mutations (PAMs).
Results: We embedded real and simulated homologs
of protein sequences into a database and searched the
database to determine the gap penalties that produced the
best statistical significance for the distant homologs. The
most effective penalty for the first residue in a gap (q + r)

changes as a function of evolutionary distance, while the
gap extension penalty for additional residues (r) does not.
For these data, the optimal gap penalties for a given matrix
scaled in 1/3 bit units (e.g. BLOSUM50, PAM200) are
q = 25 − 0.1 • (target PAM distance), r = 5. Our results
provide an empirical basis for selection of gap penalties
and demonstrate how optimal gap penalties behave as a
function of the target evolutionary distance of the substitu-
tion matrix. These gap penalties can improve expectation
values by at least one order of magnitude when search-
ing with short sequences, and improve the alignment of
proteins containing short sequences repeated in tandem.
Contact: wrp@virginia.edu

INTRODUCTION
Sequence similarity searching and sequence alignment
programs have become indispensable tools for biologists.
These programs are routinely used to identify homologous
sequences, to infer the structure and function of proteins
and even to analyze patterns in entire genomes or pro-
teomes.

Alignment algorithms typically allow residues in one
sequence to be aligned to a gap in the other sequence in
exchange for a penalty. Most algorithms employ an affine
gap penalty scheme, in which a penalty q is accessed for
the existence of a gap and another usually smaller penalty
r is accessed for extending the gap (Waterman et al., 1976;
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Gotoh, 1982; Fitch and Smith, 1983). Thus the penalty for
the entire gap is q + r • k, where k is the gap length.

Gap penalties as log-odds ratios
Although the statistical behavior of local alignment scores
is well understood both for ungapped (Karlin and Altschul,
1990) and gapped (Mott, 1992; Altschul et al., 1997;
Pearson, 1998) local alignments, current models provide
little guidance in the selection of gap penalties. For very
distant relationships, experience suggests that gap penal-
ties that are as low as possible, but still produce local
alignments between unrelated sequences, are the most
effective (Vingron and Waterman, 1994; Pearson, 1995,
1998).

For alignments between more closely related sequences,
an information theoretic perspective can provide guidance
in selecting gap penalties. Altschul (1991) has shown that
in the context of local sequence alignment, the values in
residue substitution matrices can be considered ‘log-odds
ratios’. That is, an entry in the matrix is the ratio of the
probability of an amino acid i aligning with amino acid
j (qi j ) because they diverged from a common ancestor
and the probability of the two amino acids i and j being
aligned due to chance (pi • p j ). From this perspective, qi–,
the probability of an amino acid i being inserted into or
deleted from a protein, might be estimated from multiple
alignments. However, (pi • p–), the probability of aligning
residue i to a gap by chance, is difficult to estimate because
the background frequency of gaps (p–) is unknown and
probably changes with different gap penalty values.

Consequently, gap penalty parameters have been opti-
mized empirically based on their performance in similar-
ity searches (Pearson, 1995), accuracy of the alignment
generated (Fitch and Smith, 1983; Vogt et al., 1995), or
maintenance of expected statistical characteristics for un-
related sequences (Vingron and Waterman, 1994). These
methods typically have focused on one or a few substi-
tution matrices, e.g. BLOSUM50 or PAM250, but the
results are often extrapolated to use with all substitu-
tion matrices with the same scale (λ, Altschul, 1991).
Thus, the gap penalties used by default in the FASTA
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program†, q = 10 and r = 2, maximize sensitivity
at long evolutionary distances (Pearson, 1995, 1998). If
the target frequency for indels (qi–) is lower for short
evolutionary distances, the gap penalties should be higher.
Thus, ‘distant’ gap penalties are probably too low for
short evolutionary distances, just as scoring matrices with
long target distances are inefficient at identifying closely
related sequences (Altschul, 1991). The loss of efficiency
from low gap penalties is mitigated by the fact closely
related sequences are easy to find and relatively easy to
align, so their homology probably will be evident even if
inappropriate gap penalties are used. The loss of efficiency
at shorter evolutionary (target) distances with inappro-
priate (‘deep’) scoring matrices is most noticeable when
short sequences are aligned (Altschul, 1991); gap penalty
choice is more likely to be crucial with short sequences as
well. Higher gap penalties with shallow scoring matrices
should reduce the number of gaps allowed between the
query and unrelated sequences, resulting in lower scores
for unrelated sequences and improved expectation values
and bit scores for homologs. Moreover, improved gap
penalties should improve alignments of short tandemly
repeated subsequences.

Here we empirically determine effective gap penalties
for scoring matrices targeted at different evolutionary
distances. Our results from simulated sequences and real
sequences agree well, and provide an empirical basis for
the selection of gap penalties for a given substitution
matrix. These improved gap penalties improve sensitivity
when searching with short sequences and also improve the
quality of the alignments.

SYSTEM AND METHODS
We determined the gap penalties that maximized the
effectiveness of sequence alignment programs in finding
homologs of a given sequence. The homologs were either
real or simulated using evolutionary models described
previously.

Generation of simulated sequences
Twenty sequences were selected from 20 different protein
families from the SWISSPROT protein database release
34 and reversed to yield a pseudo-random sequence.
Artificial homologs of a given sequence were generated
using seqevolver (Reese et al., in prep.; http://fasta.
bioch.virginia.edu/seqevolver). Briefly, point mutations
were generated after the Dayhoff model (Dayhoff et al.,

† Previous versions of the FASTA programs implement gap penalties as the
penalty for the first residue in a gap (q+r) and the penalty for each additional
residue (r). Other programs, such as BLAST, refer to a gap open penalty (q)

and an extension penalty (r). For this paper, we use the more widely accepted
gap-open/gap-extend values, and the current version of FASTA (version 3.4)
has been modified to use open/extend penalties and to incorporate the gap
penalties described in this work.

1978). The PAM-x probability matrix was generated by
matrix multiplication of the appropriate number of PAM1
probability matrices. A given amino acid was mutated by
selecting a random number from a uniform distribution
and mutating to the amino acid corresponding to the row
in which the cumulative sum of probabilities was greater
than the random number. Indels were generated using the
model of Benner et al. (1993). Given a PAM distance d,
the probability of an indel at any amino acid is:

P(indel) = 0.0224 − 0.0219e−0.01168•d

and the length of the indel is independent of PAM distance,
and is selected randomly from a Zipfian distribution with
an exponent of 1.7 (Benner et al., 1993).

Selection of real sequences
Protein sequences with 50 homologs at a given PAM
distance were chosen from the SWISSPROT protein
database. PAM distances between the sequences and
their homologs were measured by aligning the query
to each homolog using the Smith-Waterman algorithm,
BLOSUM50 substitution matrix and gap penalties of q =
10 and r = 2, and obtaining the percent identity. PAM
distance was inferred from percent identity id using

d = −83 • ln(1 − ((100 − id)/100)/0.83)

where d is distance in PAM units (Gu and Zhang, 1997).
PAM distances did not change significantly when re-
measured using a substitution matrix with a target distance
equal to the average PAM distance of the 50 homologs
(data not shown). Thirty-five sets of homologs were used,
representing 12 protein families and a range of distances
from 20 to 180 PAMs. The average of the standard
deviations of PAM distances between sequences and their
50 homologs for the 35 sets of homologs was 3.94 PAMs.
Additional information about the sequences used in this
analysis can be accessed at http://www.people.virginia.
edu/∼wrp/papers/gappen/supplement.html.

Database searches
Synthetic or true homologs were embedded in a database
of 23 981 unrelated protein sequences. For the reversed
synthetic sequences, the database was an annotated subset
of SwissProt 34; the real protein sequences were em-
bedded in 23 981 reversed SwissProt 34 sequences. The
database was searched using either FASTA, ktup = 2 or
SSEARCH with a substitution matrix corresponding to
the average PAM distance between the query sequence and
its 50 homologs. Bit scores and expectation values were
calculated empirically by FASTA/SSEARCH (Pearson,
1998; Pearson and Wood, 2001).
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Fig. 1. Performance of gap penalties at different PAM distances. A database containing 50 simulated (A) or real (B) homologs separated
from the query sequence by the given PAM distance was searched using SSEARCH (Pearson, 2000) with a substitution matrix whose target
distance corresponded to the given PAM distance. A. Performance of (q + r) and r values at different PAM distances using simulated
sequences. For each set of homologs, the median of the bit scores for the lowest scoring five homologs was determined. The results from the
20 sets of homologs were combined using a local regression as described in Systems and Methods. The normalized bit score for each (q + r)

and r combination is plotted. B. Performance of (q + r) and r values at different PAM distances using real sequences. As in A, the results for
each set of homologs and PAM distance were normalized to 1 and combined using a local regression as described in System and Methods.
The normalized bit score for each (q + r) and r combination is plotted.

Measurement of optimal gap penalties
We used the median bit scores of the five lowest scoring
of the 50 homologs to measure gap penalty performance.
Bit scores were used instead of expectation values because
the expectation values were not measurably larger than
zero for the most closely related sequences. When results
from several sets of homologs at a given PAM distance
were combined (Figure 1), the results for each homolog
set were normalized to a value from 0 to 1, with 1 being the
highest bit score for the homolog set. The results for that
PAM distance were then combined using local regression
(loess function of S-PLUS version 5). When (q + r)

or r was considered as a function of PAM distance (e.g.
Figure 2), the optimal value for either (q + r) or r for
each of the 35 sets of homologs was determined. Linear
regressions were performed using the lm() function of S-
PLUS version 5. In the case of ties (multiple gap penalties
all yielding the highest bit score for the median of the

lowest scoring five homologs), the (q +r) or r values were
weighted according to the inverse of the number of values
participating in the tie; otherwise, each (q + r) or r was
assigned a weight of 1.

Substitution and probability matrices
Amino acid replacement frequencies qi j and background
frequencies were obtained from amino acid exchange data
generated from SWISSPROT release 15.0 (Jones et al.,
1992). The CALCPAM program (Jones et al., 1992) was
used to calculate log-odds scoring matrices at different
evolutionary distances.

RESULTS
The probabilities of replacement mutations qi j increase
with evolutionary distance. For example, the probability
(qi j ) of finding aspartic acid ‘D’ and cysteine ‘C’ aligned
in two homologous proteins after 200 Point Accepted
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Fig. 2. Change in optimal gap penalties with PAM distance. A. Optimal gap penalties for simulated sequence data. The optimal (q + r)

(circles) or r (triangles) for each of 20 sets of homologs at each of ten PAM distances (from PAM 20 to PAM200 at intervals of 20 PAMs) is
shown. A small amount of scatter was introduced into the x-axis to show overlapping symbols. The least squares regressions for both (q + r)

(solid line) and r (dashed line) are shown (r2 = 0.55, F-statistic = 254.5, p = 0 and r2 = 0.05, F-statistic = 11.86, p � 0.0007 for
(q +r) and r regressions, respectively); character size indicates weight in the regression (see System and Methods). B. Optimal gap penalties
for real sequence data. For each of the sets of homologs at a given PAM distance, the (q + r) (circles) or r (triangles) at which the median
of the bit scores of the lowest scoring five homologs was maximal is plotted. The least squares regression lines for (q + r) (darker solid
line) and r (dashed line) are shown (r2 = 0.39, F-statistic = 47.12, p � 10−9 and r2 = 0.02, F-statistic = 1.76, p � 0.18 for (q + r)

and r regressions, respectively); character size indicates weight in the regression (see System and Methods). Lighter solid line indicates
the regression for (q + r) when (q + r) values from outlier points from three homolog sets are omitted (r2 = 0.59, F-statistic = 46.36,
p � 10−7).

Mutations (PAMs, 200 mutations per 100 residues) is
0.00052, which is over 50 times greater than the (qi j )

after only ten PAMs (1.02 × 10−5). We hypothesized
that the target frequency of indels should increase with
evolutionary distance as well, and consequently optimal
gap penalties should decrease with increasing target
evolutionary distance. Conversely, optimal gap penalties
for shorter evolutionary distances should be higher.

We chose an empirical approach to determining optimal
gap penalties, using both simulated and real sequence
data. We embedded homologs in a database of unrelated
sequences, and determined the gap penalties that yielded
the highest bit scores for distantly related homologs.
Maximizing the bit score with respect to this measure
maximizes the sensitivity of detection of distant homologs
while still allowing the detection of closer homologs.

Results are presented in terms of optimal first residue
penalty (q + r) and additional residue penalty r instead
of q and r because the correlation between evolutionary
distance and (q + r) is much stronger than the correlation
with q.

As expected, search performance depends strongly on
gap penalties. For one homolog alignment at 100 PAMs,
gap penalties of (q + r) = 20, r = 4 resulted in
a bit score of approximately 165, while gap penalties
of (q + r) = 12, r = 2 resulted in a bit score of
approximately 80. This 85 bit increase in similarity score
corresponds to a 285 (∼ 1025) fold increase in statistical
significance. For this 216 amino acid query sequence, the
average similarity increased from 0.37 bits per residue
to 0.76 bits per residue. For a search of a database the
size of SWISSPROT, a score of 37 bits is required to
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obtain a statistical significance E() < 10−3. In this case,
the more effective gap penalties decreased the sequence
length required to obtain a score of 37 bits from 100
amino acids to 49 amino acids. Thus, proteins containing
a single immunoglobulin domain (68 amino acids) or a
single fibronectin type-3 domain (86 amino acids) at an
evolutionary distance of 100 PAMs might be missed with
the lower gap penalties, but should be easily detected with
the gap penalties we describe.

Search effectiveness is more sensitive to the choice of
(q + r) than to r ; bit scores vary much more with (q + r)

than with r , especially near the best gap penalties. For
example, at 160 PAMs, bit scores ranged from 40 to 65
when (q + r) is varied and r is held constant at 4; in
contrast, bit scores range only from about 65 to 68 when
r is varied and (q + r) is 18. When the results for 20
different sets of simulated homologs were combined, the
same trend was observed (Figure 1a). Similar results were
seen when real sequences were used to evaluate the gap
penalties (Figure 1b).

The optimal (q +r) values decreased from 25 to 15 with
increasing PAM distance (Figure 2a). The most effective
extension penalty was relatively constant at r = 5 (while
the decrease in optimal r with respect to PAM distance
was statistically significant, p � 0.0007, the slope was
very slight, 0.0087; Figure 2a). We confirmed this result
using real sequence data from a diverse set of protein
families. Again, the optimal values for (q + r) decreased
with PAM distance. A very slight decrease in optimal
r with respect to PAM distance was observed, but this
decrease was not statistically significant (p � 0.18)
(Figure 2b); the optimal value for r was approximately 5.
Compared with the simulated data, the slope of the fitted
line for (q + r) with respect to PAM distance (Figure 2b,
darker solid line) was steeper and the y-intercept was
slightly higher than for the simulated data. Because the
residuals from three sets of points (at 20, 80 and 100 PAM
units, Figure 2) were inordinately high, the regression was
redone excluding these outliers (Figure 2b, lighter solid
line); the resulting robust regression agrees better with
the simulated data for optimal (q + r), although both the
y-intercept and slope were still slightly greater than the
corresponding values for the simulated data. In general,
the results from the real and simulated sequence data agree
well.

The results from simulated and real sequence data
provide an empirical basis for the selection of effective
gap penalties. Taken together, these data indicate the most
effective first residue penalty (q + r) changes appreciably
as a function of PAM distance, while the most effective
subsequent residue penalty r stays nearly constant with
PAM distance in the range relevant to target distances of
PAM matrices. Specifically, the robust regression using
real sequence data (Figure 2b) indicates that the most

effective gap penalties for a matrix in 1/3 bit units (e.g.
BLOSUM50, PAM200) are q = 25 − 0.1 • (target PAM
distance), r = 5. For matrices scaled in 1/2 bit units (e.g.
matrices at distances of PAM120 or less used by BLAST),
the formula is q = 16.7 − 0.067 • (target PAM distance),
r = 3.

To confirm that the above results may be extrapolated
to heuristic methods based on the Smith–Waterman al-
gorithm (Altschul et al., 1997; Pearson, 2000), we re-
peated the above experiments using FASTA instead of the
SSEARCH. As before, the most effective (q + r) value
decreased appreciably as a function of PAM distance,
while the most effective r value did not (data not shown).
The values for q and r implied by these data were very
similar (q = 22 − 0.081 • (target PAM distance) and
r = 6) to those for the Smith–Waterman experiments.
This suggests that the gap penalties implied by Smith-
Waterman results can be extrapolated to heuristic algo-
rithms such as FASTA.

The gap penalties suggested by these data are consider-
ably larger than those used by default in many sequence
alignment programs, especially for matrices with short
target PAM distances. For example, for a matrix in 1/3 bit
units with a target distance of 20 PAM units, these data
suggest gap penalties of approximately q = 23, r = 5,
compared with the default values for older versions of
FASTA of q = 10, r = 2. Likewise, current WWW ver-
sions of BLAST (2.2.2) provide the PAM30 matrix with
gap open penalties ranging from 5–10 and gap extension
penalties of 1 or 2; our results suggest that a gap open
penalty of 14–15 and an extension penalty of 3 would be
more effective.

These gap penalties improve sensitivity when one must
use shallow matrices, such as when one is searching with
short sequences. We evaluated this increase in sensitivity
by examining the expectation values for each of 59
homolog pair alignments, where one of the sequences
contained only 20 amino acids. When searching with
gap penalties of q = 10 and r = 2 (the default
for older versions of FASTA), the homolog was found
(E() < 10−3) 33 of 59 times (Figure 3). When then
same experiment was done using improved gap penalties
of q = 21 and r = 5, the homolog was found 39 of
59 times, an 18% improvement in sensitivity. Moreover,
for alignments that fell near the threshold of sensitivity
(E() ∼ 10−2) the expectation value improved 10–
100-fold when the most effective gap penalties were
used (Figure 3). In two cases sensitivity decreased,
probably in cases where large indels occurred in the 20
amino acid sequence or the corresponding homologous
sequence to which it was aligned. In the large majority
of cases, the expectation value improved, indicating that
the gap penalties suggested here improve sensitivity when
searching with short sequences.
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Fig. 3. PAM distance dependent gap penalties improve sensitivity.
For each of 58 real protein sequences, a homolog separated from the
sequence by 40 PAM units was embedded in a database of unrelated
sequences. A subsequence of 20 amino acids was randomly chosen
from the sequence and used to search the database using SSEARCH
with a PAM 40 substitution matrix and either default (q = 10,
r = 2) or PAM distance dependent (for PAM40, q = 21, r =
5) gap penalties. The log change in expectation value (log10(E-
valuedefault)–log10(E-valuePAM distance dependent) is plotted as a
function of the log10(E-valuedefault) calculated using default gap
penalties.

These gap penalties also improve the alignment of
proteins containing short tandemly repeated sequences.
We have observed that when aligning proteins with
repeated subsequences, the alignments frequently contain
spurious gaps. For example, Figure 4 shows a self-
alignment of the C-terminal domain (CTD) of mouse RNA
polymerase II. This domain contains approximately 50
tandem repeats of a seven amino acid sequence. Using
the MDM20 matrix (target distance of 20 PAM units)
and gap penalties of q = 10 and r = 2 produces an
alignment with many gaps (vertical or horizontal lines,
Figure 4a), where the tandem repeats shift in register by
one or two repeat units. Using the gap penalties suggested
here, the alignments contained only two or three spurious
gaps (Figure 4b). Alignment algorithms are widely used to
detect and analyze repeated sequences in protein and DNA
(Heringa and Argos, 1993; Benson, 1999; Pellegrini et
al., 1999; Matsushima et al., 2000; Andrade et al., 2000);
these more stringent gap penalties should improve the
detection and characterization of repeated subsequences
in protein and DNA.

DISCUSSION
We have determined effective gap penalties for similarity
searching over a range of evolutionary distances from
PAM20 to PAM200. We believe the results using real
sequences provide the best measure of effective gap
penalties, since these results agree well with the simulated
data but measure the behavior of real sequences. The
agreement of Smith–Waterman results with the those
using FASTA indicate that the gap penalties suggested
here are also appropriate for use with more widely used
heuristic algorithms (Pearson, 2000; Altschul et al., 1997).
The gap penalties suggested by these data are higher
than those previously used by default in FASTA and
those currently used by default in BLAST (Altschul et
al., 1997), and should improve performance particularly
when short queries are used. The similarities in optimal
gap penalties and the independence of the gap extension
penalty and PAM distance for real protein homologs are
consistent with the observation (Benner et al., 1993)
that gap length does not increase significantly with
evolutionary distance.

The gap penalties suggested here for PAM matrices
can be extrapolated to other substitution matrices, like
the BLOSUM series (Henikoff and Henikoff, 1992).
Henikoff et al. have shown a rough equivalence of a
given BLOSUM matrix to a PAM matrix based on relative
entropy (Henikoff and Henikoff, 1992). Based on relative
entropy, the most effective gap penalties for a BLOSUM80
matrix should be nearly the same as for the PAM120
matrix (q = 9, r = 3), and the most effective gap penalties
for BLOSUM62 should be similar to those for PAM160
(q = 5, r = 3). (In both cases, the penalties implied
by the PAM matrices have been scaled to adjust for the
1/2 bit scaling used for the BLOSUM80 and BLOSUM62
matrices.) However, for very distant relationships with full
length sequences, effective gap penalties for BLOSUM62
are q = 7, r = 1 (Pearson, 1995). Both sets of gap
penalties for BLOSUM62 suggest the same penalty (q+r)

for the first residue in a gap (8), but differ in the extension
penalty.

This paper describes the best gap penalties for sequences
that have diverged by a target PAM distance. Usually
one does not know the target PAM distance, but in some
cases, e.g. searching for orthologs between rodents and
primates or identification of short-period repeats, a target
distance can be estimated. The common practice of using
a very ‘deep’ scoring matrix does not usually prevent
one from identifying more closely related homologs
(Altschul, 1991; Pearson, 1995), but alignments should
improve with scoring matrices and gap penalties targeted
to the correct evolutionary distance. These penalties have
been incorporated into the current version of the FASTA
program.
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Fig. 4. PAM distance dependent gap penalties improve alignments. The C-terminal domain of Mus musculus RNA polymerase II (gi|90464)
was aligned to itself with PLALIGN (Pearson, 2000) using an MDM20 substitution matrix and either (A) default gap penalties of q = 10
and r = 2 or (B) PAM dependent gap penalties of q = 23 and r = 5.

The gap penalties suggested here maximize sensitivity
in database searching, not the quality of the pairwise
alignment. While our gap penalties improve the alignment
of proteins containing repeated sequences (Figure 4), it
is likely that the most effective gap penalties for a given
substitution matrix used in database searching differ from
the penalties that produce the best alignment between
two sequences (Vingron and Waterman, 1994). In the
former case, one is attempting to detect homologs by
maximizing the difference between the alignment scores
with homologous sequences and those with unrelated
sequences. In contrast, optimizing an alignment between
homologous proteins or protein domains is a global
alignment problem. Vingron and Waterman (1994) and
others have shown that low gap penalties shift alignments
from local to global, so it is not surprising that lower gap
penalties can produce more accurate alignments for very
distantly related sequences. Vogt et al. have determined
the gap penalties that produce the best alignment for
the PAM matrices, and the optimal gap penalties are
in fact lower than the ones reported here (Vogt et al.,
1995). Nonetheless, for more closely related sequences
with short tandem repeats, low gap penalties can produce
less accurate alignments (Figure 4).

This gap penalty formula should not be applied to
matrices with target distances greater than 200 PAMs,
the longest distance we tested. At PAM 250 the formula

recommends q = 0 and r = 5, which will violate the
underlying statistical model by producing global rather
than local alignments (Altschul and Gish, 1996). For
longer distances, (Pearson, 1995) has determined gap
penalties that maximize sensitivity and selectivity. This
‘discontinuity’ probably reflects a transition from the need
for local alignments to reduce the scores of unrelated
sequences and the need for global alignments to produce
the highest homolog score. The improvement in sensitivity
using our PAM-dependent gap penalties will be most
dramatic when searching with short sequences, such as
those produced in proteomics efforts direct sequencing,
or when ‘shallower’ matrices are used to focus on recent
evolutionary events.
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