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ABSTRACT

Motivation: To test whether protein folding constraints and
secondary structure sequence preferences significantly reduce the
space of amino acid words in proteins, we compared the frequencies
of four- and five-amino acid word clumps (independent words) in
proteins to the frequencies predicted by four random sequence
models.
Results: While the human proteome has many overrepresented
word clumps, these words come from large protein families with
biased compositions (e.g. Zn-fingers). In contrast, in a non-redundant
sample of Pfam-AB, only 1% of four-amino acid word clumps
(4.7% of 5mer words) are 2-fold overrepresented compared with
our simplest random model [MC(0)], and 0.1% (4mers) to 0.5%
(5mers) are 2-fold overrepresented compared with a window-shuffled
random model. Using a false discovery rate q-value analysis, the
number of exceptional four- or five-letter words in real proteins
is similar to the number found when comparing words from one
random model to another. Consensus overrepresented words are
not enriched in conserved regions of proteins, but four-letter words
are enriched 1.18- to 1.56-fold in α-helical secondary structures
(but not β-strands). Five-residue consensus exceptional words are
enriched for α-helix 1.43- to 1.61-fold. Protein word preferences in
regular secondary structure do not appear to significantly restrict
the use of sequence words in unrelated proteins, although the
consensus exceptional words have a secondary structure bias for
α-helix. Globally, words in protein sequences appear to be under
very few constraints; for the most part, they appear to be random.
Contact: wrp@virginia.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
We are interested in exploring the extent to which protein structural
constraints and secondary structure sequence preferences restrict
the space of possible protein sequences. The remarkable ability
of sequence similarity searching, and local similarity statistics,
to identify proteins that share similar structures, even when
those proteins share <25% protein sequence identity, reflects the
observation that real unrelated protein sequences have similarity
scores that are indistinguishable from random protein sequences
(Brenner et al., 1998; Pearson and Sierk, 2005). Thus, proteins
that share more similarity than expected by chance can reliably be

∗To whom correspondence should be addressed.

inferred to be homologous. Moreover, from a sequence similarity
perspective, real unrelated proteins are indistinguishable from
random synthetic protein sequences.

However, sequence similarity involves the comparison of two
complete proteins; in real protein sequences, short amino acid words
from a modest number of structural types may provide substantial
constraints. For example, while there are 20200 possible proteins
of length 200, one could imagine these proteins to be comprised
of 1050 combinations of four-amino acid words from 10 different
structural types. While the latter number is very large, so that a
protein structural alphabet might not constrain sequence similarity
scores enough to make them appear non-random, it is more than
10200 times smaller than the former. Here, we search for restrictions
on the space of protein sequences that can be used to build real
proteins by counting four- and five-residue words in non-redundant
sets of proteins.

Our approach, identifying constraints on global amino acid
choice in proteins, is very different from the more traditional goal
of associating sequence preferences with amino acid secondary
structure (Chou and Fasman, 1974; Rost and Sander, 1993). Amino
acid preferences in secondary structure, when coupled with data
from aligned homologous sequences, can yield accurate (>70%
Q3) secondary structure predictions (Jones, 1999; McLysaght, 2005;
Pollastri et al., 2002; Rost, 2001). However, it is unclear whether
these secondary structure preferences restrict amino acid word
choice across the entire protein. Put another way, do secondary
structure word preferences drive protein word composition? or
are protein sequence word choices relatively unrestricted, so that
the local word choices drive the secondary structure, rather than
vice-versa? Here, we focus on sequence constraints in unrelated
proteins with dissimilar structures; within a protein family, there are
strong evolutionary constraints on protein word choice that reflect
evolutionary history in addition to structural constraints.

If secondary structure word preference drives protein word
composition, real protein sequences should prefer structurally
favored amino acid words, and these preferences should distinguish
real proteins from models of random proteins. For example,
the engrailed homeodomain from Drosophila melanogaster folds
rapidly in a hierarchical manner by the diffusion–collision of
partially formed secondary structural elements (Mayor et al., 2003).
Here, folding information should be encoded locally in the sequence,
since secondary structure must form first with only local interactions
(Baldwin and Rose, 1999; Karplus and Weaver, 1994). Proteins that
fold by the hierarchical diffusion–collision process should show
local sequence constraints.
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Conversely, if protein folding constraints are local in the structure,
but distant in the sequence, then real protein sequences might
be largely indistinguishable from random sequences. Proteins that
fold by nucleation–condensation, with the concurrent acquisition
of secondary and tertiary structure (Fersht, 1995), should appear
more random. Chymotrypsin inhibitor 2 (CI2) shows 2-state folding
kinetics and is proposed to fold by a global process; a mostly
denatured unfolded chain quickly folds to its native conformation
with secondary and tertiary structure forming concomitantly
(Jackson and Fersht, 1991). These proteins should not have strong
local sequence constraints, since the folding nucleus is diffuse
and requires contacts from many sequence distant amino acid
residues.

Here, we present a rigorous survey of a large non-redundant
domain library using four- and five-residue words at regular spacings
that span 4–13 amino acids and 5–17 residues, respectively. We find
that most protein words are well described by random sequence
models, suggesting that there are no strong constraints limiting the
space of amino acid words in protein sequences.

The hypothesis that proteins are largely random is not new. Ptitsyn
and Volkenstein (1986) argued that proteins ‘mainly represent
memorized random sequences while biological evolution reduces
to the editing these random sequences’, and the high information
content of protein sequences seen with Shannon entropy analysis
(Crooks and Brenner, 2004; Weiss et al., 2000) supports the random
model.

We extend previous studies by comparing the observed word
clump counts to those estimated from four different random models
of protein sequences: Bernoulli [MC(0)], Markov chain order 1
[MC(1)], shuffled and 10-residue segment window shuffled (win10-
shuffled). We then assign a statistical significance to each non-
overlapping word and use false positive discovery rate (FDR;
q-value) analysis to select statistically significant exceptional words
(Reinert et al., 2000; Storey and Tibshirani, 2003). We present
the first list of statistically exceptional words, mapped onto a
non-redundant set of protein structures. We find that, on the
whole, protein words are largely random; there are few statistically
exceptional words and their deviation from random expectation
is small. Overrepresented four-amino acid words are no more
evolutionarily conserved than random, but overrepresented four-
and five-residue words do show a preference for α-helical secondary
structure.

2 MATERIALS AND METHODS

2.1 Non-redundant library construction
A non-redundant library of protein domains was built using Pfam version
21.0 domain boundaries (Sonnhammer et al., 1997). A single random
representative from each PfamA family or clan produced 7510 domains;
186 970 non-redundant PfamB domain representatives were chosen. The
PfamA and PfamB domains were combined and clustered (single-linkage)
to remove related sequences using an E-value threshold ≤0.001 from a
Smith–Waterman all-versus-all comparison (ssearch34 with blosum62
on seg-ed sequences). The longest domain from each cluster was selected
to give the final non-redundant library of 7431 PfamA and 178 101 PfamB
domains with a cumulative length of 19.6 million residues (18.2 after seg.)

A library of PfamA domains with known conservation (entropy) profiles
was created from PfamA as described above, with 1.37 million residues
(1.29 after seg). Sequences from non-redundant representative domains

were aligned to its corresponding hidden Markov models (HMMs) using
hmmpfam version 2.3.2 (Eddy, 1998). The match state entropy in half-bits
for each position was calculated using the null and match state emission
scores from the corresponding HMM, and the Shannon entropy H(Xi) for
each match position Xi within the HMM was calculated. The entropy per
position was converted into half bits and rounded down so that each position
in a match emission state gets an integer score between 0 and 8. At a position
that is invariant, the entropy will be zero, but the lowest observed entropy is
1 half bit. Positions in the HMM that have no amino acid preference have a
score of 8.

To examine word preferences in protein secondary structures, we
constructed a dataset containing one randomly selected sequence from each
topology class in cath v3.1.0 (Orengo et al., 1997), producing a library
of 1084 distinct topolog sequences with a total of 155 950 amino acids
(151 327 after seg). The amino acid sequence and secondary structure
assignments were taken from the CATH supplied DSSP files available
from http://www.cathdb.info/staticdata/v3_1_0/domdssp/. The 8-state DSSP
secondary structure assignments were assigned to 3-states by one of two
methods: (i) H to H; E to E, all others to L or (2) H, G and I to H; E and B to
E; all others to L. The data presented here are exclusively from the second
assignment method although both assignments gave similar results.

2.2 Counting word clumps
The simplest method for counting four-residue words in a protein simply
tabulates the N −3 words in a sequence of length N . However, overlapping
word positions are not independent, e.g. in the sequence QRQRQR the second
QRQR is much more probable given the first QRQR (Reinert et al., 2000).
In this article, we report statistics on the number of four-amino acid word
clumps, or non-overlapping words. A clump is an island of potentially
overlapping words (Reinert et al., 2000). There is only one four-amino acid
clump in QRQRQR. Within a protein sequence, if two identical four-letter
words are found to overlap one another, then the clump is enlarged to contain
both of the words into one clump.

To count clumps or islands in four-amino acid words built from non-
adjacent residues, e.g. the residues at positions 1, 3, 5, 7 (i+2); 1, 4, 7, 10
(i+3); or 1, 5, 9, 13 (i+4), the sequences were first transformed into a new
set of words using the indicated offset, and then the clumps within the words
were identified. The same process is used for non-adjacent five-residue word
clumps.

2.3 Random libraries and parameter estimation
Random libraries were constructed using perl version 5.8 and R version
2.4.1 (http://www.r-project.org/) scripts. Four models were used to produce
random protein sequences: (1) a Bernoulli or Markov chain order 0 [MC(0)]
model, which produces sequences based on the frequencies of the 20
individual amino acids; (2) a Markov chain order 1 [MC(1)] model, which
produces sequences that preserve di-peptide frequencies; (3) sequences
produced by shuffling real protein sequences uniformly across the length of
each sequence; (4) sequences produced by shuffling real protein sequences
locally within a 10-letter window (win10-shuffled). Models (3) and (4) differ
from (1) and (2) by preserving the sequence composition bias present in
individual protein sequences. For a hypothetical 100 000 sequence library,
model (3) can be thought of as 100 000 approximate instances of model (1),
where the composition of the individual protein is used to produce the amino
acid frequencies. Model (4) produces random sequences that reproduce both
individual sequence composition bias and internal domain composition bias.
Thus, model (4) is expected to have statistical properties that are most
similar to real protein sequences. For five-residue word counts from a 10-
letter alphabet (Murphy et al., 2000), residues were mapped and 10-letter
frequencies [MC(0)] or 102-di-peptide frequencies [MC(1)] were used. The
expected clump count used for probability calculations was estimated from
the mean clump counts from 100 replicate random libraries.
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2.4 Statistical significance and q-value analysis
Given a set of word counts from real proteins, we ask whether individual
word frequencies differ significantly from four random models. Exact
algorithms are too slow to calculate P-values for all four- or five-residue
words (Nuel, 2006), so we estimated word probabilities using either a Poisson
distribution, for words with an estimated expected clump count N ≤ 50, or
a Normal distribution (N > 50). Mean clump counts were estimated from
random libraries and used for the Poisson λ and Normal mean parameter.
The Normal distribution standard deviation (SD) was estimated from 100
replicate random libraries. Each observed word’s P-value is then taken from
a two-tailed test using the Poisson or Normal distribution.

The q-value analysis was used to estimate the inclusion of likely false
positives into a pool of exceptional words. R version 2.4.1 with the package
qvalue version 1.1 was used to assign a q-value to each word when given
the above set of words with their associated P-values (Storey and Tibshirani,
2003). Briefly, each word w was ordered by its P-value and, iteratively, words
w with the lowest P-value were placed into the statistically exceptional pool
of words as long as the word has a q-value less than the predetermined
cutoff. The q-value estimates the false positive rate when including that word
in the significant pool. We used a q-value cutoff <0.03 for labeling words
statistically exceptional. Based on this cutoff, the final pool of exceptional
words should contain <3% false positives.

3 RESULTS

3.1 Four- and five-residue words from non-redundant
protein libraries appear random

To explore restrictions on protein words, we tabulated the number
of four-residue words found in Human-RefSeq proteins and
compared them with words produced by four random models:
Bernoulli or MC(0), MC(1), shuffled and win10-shuffled (Section 2).
A comparison of Human-RefSeq proteins with a random Markov
chain order 1 [MC(1)] model that preserves the di-peptide observed
frequencies is shown in Figure 1. Although we refer to amino acid
words throughout this article, we actually tabulated the number of
independent four- or five-residue word clumps, rather than every
four- or five-residue word, in a sequence. Amino acid clumps are
non-overlapping words; the sequence QYEKQQQQQPDKQFKE has
two overlapping instances of QQQQ but only one clump (Reinert
et al., 2000, see Section 2). The sequence QRSTQRSTQRST contains
nine four-residue words and also nine four-residue clumps, because
even though the sequence is repetitive, there are no overlapping
repeats. We report clump counts, rather than word counts, because
the residue positions within overlapping words are not independent.
The Poisson distribution describes clump counts in sequences
produced by Markov model (Reinert et al., 2000). The Poisson
distribution accurately estimates clump counts less than 50 (larger
counts can be estimated using the Normal distribution). While there
are ∼14.6 million residues in the Human-RefSeq protein set, the
median expected clump size is ∼56 (Fig. 1), so almost half of the
Human-RefSeq clump counts, and one-third of the Pfam-AB counts,
are estimated using the Poisson distribution.

The size of our datasets (14.6 million for Human-RefSeq, 18.2
million for Pfam-AB) prevents us from examining longer protein
word clumps using a 20-letter alphabet. There are only 160 000
words of length 4, but 3.2 million possible words of length 5,
which reduces the median clump size for Pfam-AB from 72 to 3.
Clump counts are Poisson distributed (Reinert et al., 2000), so a
four-residue word must be present 1.33 times expected at a median

R2 = 0.84 R2 = 0.94

A B

DC

Fig. 1. Non-redundant protein sequences are well described by a random
MC(1) model. Four-letter word clump counts from Human-RefSeq (A, C)
or non-redundant Pfam-AB (B, D) sequences are compared with average
four-residue word clump counts from the corresponding MC(1) model. Low-
complexity regions were removed from the sequences with seg. Observed
and expected counts, and the corresponding R2 value, are plotted directly
in (A, B); the log2 ratio of the observed to expected counts is displayed
in (C, D). Eleven points with counts greater than 1328 are omitted. The
identities of some of the most overrepresented Human-RefSeq words are
shown. The median expected clump counts (solid vertical line) are 56
(Human-RefSeq) and 72 (Pfam-AB). The mean expected clump counts
(dashed line) are 81 (Human-RefSeq) and 109 (Pfam-AB). Clumps that are
statistically significantly over- or underrepresented, as calculated using the
q-value analysis, are shown with shades of gray, ranging from darkest for
words 2-fold overrepresented or 0.5-fold underrepresented, to the lightest,
where the deviation is ≤1.25 or >0.8.

of 72 clumps to be significantly overrepresented.1 To examine five-
residue words, we used a reduced structural alphabet comprised
of 10 letters: LMIV-C-A-G-ST-P-FYW-EDNQ-KR-H (Murphy
et al., 2000). There are 100 000 possible five-residue words in this
alphabet, but the 10-letter mapping concentratesLMIV into one letter
and EDNQ into another, so the dynamic range in abundance is much
greater than that found for the 20-letter alphabet. As a result, the
median clump size for five-residue words is 40.

In the Human-RefSeq protein set and other comprehensive
protein databases, a well-recognized difference between real and
random sequences is low-complexity regions minus regions of
proteins, where the local amino acid composition is restricted.
The sequences in Figure 1 were scanned with seg to remove
low-complexity sequences (Federhen, 1993). seg reduces, but
does not eliminate completely the overabundance of observed
low-complexity words within both Human-RefSeq and Pfam-AB

1We use the phrase ‘times expected’ to refer to the ratio of observed
to expected, e.g. in Figure 1C and D; we limit the use of the phrase
‘over-’ or ‘underrepresented’to exceptional word clumps that are statistically
significantly more or less common than expected by chance, based on a
q-value analysis.
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(Supplementary Material). Qualitatively, there is good agreement
between real word frequencies and those produced by the random
MC(1) model for Human-RefSeq with R2 values of 0.84 (slope 1.01)
after seg. An R2 value of 0.84 implies that a random MC(1) model
accounts for 84% of the variance within the observed word clump
counts in Human-RefSeq.

A less well-recognized difference between comprehensive real
protein datasets and random protein sequences is evolutionary
redundancy—proteins that are similar because they share a common
ancestor. Human-RefSeq proteins have a large number of word
clumps that differ significantly from random and are more than
2-fold overrepresented (Fig. 1C, dark symbols); indeed HGTE,
PYEC, PYKC and CNEC are present in Human-RefSeq proteins
25 or 32 times more often than expected. These overrepresented
words are commonly found in related Human zinc finger proteins,
one of the largest protein families in the Human genome with more
than 500 members.

To investigate how evolutionary redundancy influences word
counts, we constructed a non-redundant library of protein from 7431
PfamA and 178 101 PfamB domains (version 21, see Section 2).
Again low-complexity regions, ∼7.1% of the library, were removed
with seg. The R2 value for the correlation of the Pfam-AB four-
residue word clump counts to the estimated expected number
from a MC(1) model is 0.94 (with a slope of 1.00, Fig. 1B).
To put this in perspective, the R2 for the correlation of sets of
proteins produced with different random models ranges from ∼0.95
[Bernoulli versus MC(1), shuffled or window-shuffled] to 0.98
(shuffled versus window-shuffled; in each case the slope was ∼1.0),
and the R2 for the Pfam-AB word counts against different random
models ranges from 0.90 [an MC(0) model based on individual
amino acid frequencies, slope 1.02] to 0.95 (shuffled or window-
shuffled models, slope 1.0, Table 1). Thus, word frequencies in real
proteins are almost entirely explained by amino acid composition.

Moreover, the 2-fold overrepresented Pfam-AB-seg clumps in
Figure 1D are not overrepresented because they are frequent in real
proteins, as might be expected for words that play an important
structural role; they are overrepresented because the words are
infrequent in the random protein set. Of the 742 statistically
exceptional words that are 2-fold overrepresented in Figure 1D and
Table 1, only 51 have counts greater than the median expected
count. In contrast, when Pfam-AB-seg counts are compared with
the win10-shuffled values, 44 of the 167 clumps that are 2-fold
overrepresented by q-value analysis are larger than the median
expected count. This suggests that the apparent number of over-
or underrepresentation clumps may reflect shortcomings in the
random models, rather than structural constraints. The two purely
mathematical models [MC(0) and MC(1)] do not account for
variation in amino acid composition among protein classes; the two
shuffled models capture differences in amino acid composition and
thus can produce more accurate clump counts for combinations of
rare amino acids, which in turn reduces the number of exceptional
words.

The strong agreement between Pfam-AB word counts and
the random models confirms that much of the excess variation in
the Human-RefSeq protein set reflects the word preferences of the
largest protein families; when homologous proteins are removed
from the library, most of the difference between the counts of real and
random words disappears. When each protein family is represented
only once, the correlation of non-redundant Pfam-AB word counts

Table 1. Overrepresented four-residue exceptional words under different
random models

Model and spacing Overrepresented exceptional wordsa

1up2 1up3 1up5
>2 >1.50 >1.25

Bernoulli, MC(0)
(R2 0.90) i+1 1822 (1.1) 7519 (4.7) 17197 (10.7)

MC(1)
(R2 0.94) i+1 742 (0.5) 3240 (2.0) 10006 (6.3)

shuffled
(R2 0.93) i+1 312 (0.2) 2952 (1.8) 10613 (6.6)

win10-shuffled
(R2 0.95) i+1 167 (0.1) 1676 (1.0) 6463 (4.0)

Consensus (3 of 4)
i+1 209 (0.1) 1538 (1.0) 6350 (4.0)
i+2 73 (0.0) 1079 (0.7) 4371 (2.7)
i+3 252 (0.2) 459 (0.3) 1476 (0.9)
i+4 16 (0.0) 113 (0.1) 874 (0.5)

Consensusb (2 of 3)
i+1 295 (0.2) 2543 (1.6) 9351 (5.8)
i+2 76 (0.0) 1259 (0.8) 5034 (3.1)
i+3 252 (0.2) 472 (0.3) 1604 (1.0)
i+4 16 (0.0) 117 (0.1) 932 (0.6)

aNumber and fraction of exceptional words in parentheses.
bExcluding MC(1).

to random proteins that preserve di-peptide frequencies is very
similar to the correlation among different random models, and it is
almost impossible to distinguish real protein words from random
protein words. Thus, structural constraints on protein sequences
appear to place very little restriction on the space of possible
proteins.

3.2 Exceptional words at q-value cutoff of 0.03
Although Pfam-AB word counts are generally well described by the
random MC(1) model, some of the discrepancy between the random
models and Pfam-AB counts may reflect structural constraints.
To identify words within seg-Pfam-AB that are not well described
by the random models, each four- or five-residue word was assigned
a probability (P-value, see Section 2). An FDR approach using a
q-value cutoff of 0.03 was used to identify exceptional words for
further analysis (Storey and Tibshirani, 2003).

q-value FDR analysis is used to analyze large datasets when
the goal is to limit the number of false positives found across the
entire set of results, in contrast with the more conservative family-
wide error rate analysis, typically implemented with a Bonferroni
correction, which limits the likelihood of error for each individual
member of the dataset (Benjamini and Hochberg, 1995). We can
think of our analysis of four-residue clumps as 160 000 tests,
where in each test we ask whether the number of Pfam-AB words
is different from that expected by chance. Using the Bonferroni
correction, the expected number of times a word should occur by
chance is simply its random probability P() times the number of
tests, 160000. For the seg-scanned Pfam-AB data, there are 3082
four-residue words with a P() < 6.3×10−8 based on the random
MC(1) model, corresponding to an E-value <0.01. The Bonferroni
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correction attempts to ensure that the odds of any of the 160 000
words being classified as significantly different from random is
<0.01. But, because it is a very strict criterion, the Bonferroni
correction reduces the power of the analysis; amino acid words
that are significantly over- or underrepresented in the dataset as a
whole may be missed. To improve sensitivity, we use a q-value
approach that calculates a value based on the discrepancy between
the observed probabilities and those expected from a random data
set. For the Pfam-AB-seg data (four-residue words), there are 23 594
words with P() < 0.007, a value where we would expect that less
than 0.03 of the 23 594 words, or 708, are false positives, i.e. words
that are no more or less frequent than expected by chance. For
five-residue words from the 10-letter structural alphabet, 17 686
(17.7%) are significantly over- or underrepresented at P() < 0.008
or q() < 0.03. The remaining ∼97% of those words have counts
that are significantly different from the chance expectation. These
numbers are much higher than the Bonferroni value, because we are
allowing false positives to occur across the entire dataset.

The false discovery rate approach is potentially more sensitive,
but it can assign words to the exceptional class when the difference
between observed and expected counts is very small. To highlight
the most over- and underrepresented exceptional words, we grouped
exceptional words from Pfam-AB based on their deviation from
estimated expected occurrence. The ‘1up2’ category contains words
observed twice as often as expected; for every two counts, one
is in excess of the expected number from the random model.
Similarly, ‘1dn2’ contains words present <50% as frequently as
expected; here, for every two expected word counts, one occurrence
is missing from Pfam-AB. Figure 2 shows the fraction of all
over- and underrepresented words, shading the most over- and
underrepresented groupings and including broad groupings that
include ∼75% of the exceptional words (>1.25, 1up5; <0.8, 1dn5).
For four-residue clumps, the number of exceptional words compared
with the MC(1) model in the 1dn2 and 1up2 categories is small, with
1102 (742 + 360) from Pfam-AB-seg accounting for <1% of the total
160 000 possible words.

The counts of exceptional words summarized in Figure 2
and Tables 1 and 2 may reflect structural constraints, but alter-
natively they may simply reflect shortcomings in our random
models. Different random models produce slightly different word
distributions, and the very sensitive q-value analysis detects
significant differences in these distributions (Fig. 2). Thus, shuffled
sequences produce word counts that are significantly different from
purely mathematical models (Fig. 2B, C, F and G) and vice-versa
(Fig. 2D, E, H and I). Only when a random model is compared with
itself are there no exceptional words, though the two shuffled models
also produce very few exceptional words when compared with each
other. Not only do the different random models produce number
of exceptional words that are similar to the numbers produced by
real proteins, they also produce exceptional words with similar
abundances (1up2, 1up5, etc.).

One way to judge the significance of the number of exceptional
words in real proteins is to compare this number with the number
of exceptional words in random proteins across different random
models (Fig. 2). seg-scanned Pfam-AB contains 10 006 words that
are overrepresented by at least 25% when compared with an MC(1)
model, but only 6643 words are 25% overrepresented compared
with the win-10 shuffled model (Table 1). However, when either
the Bernoulli MC(0), shuffled or win-10 shuffled random protein
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Fig. 2. Over/underabundance of real Pfam-AB and synthetic words versus
random models. Alternate estimates of exceptional four-letter (A–E) and
five-letter (F–J) word clump counts from q-value analysis of Pfam-AB-seg
Real (A, F), MC(0) (B, G), MC(1) (C, H), shuffled (D, I) and win10-shuffled
(E, J) libraries based on four random models: MC(0), MC(1), shuffled and
win10-shuffled (W10shuf) are shown. Overrepresented words are shown as
positive fractions; underrepresented words are negative fractions. Shading
denotes the magnitude of the over- or underrepresentation with respect to the
corresponding random model; dark gray, >2.0 (1up2) or <0.5 (1dn2); gray,
>1.5 (1up3) or <0.67 (1dn3); light gray, >1.25 (1up5) or <0.8 (1dn5); and
white, exceptional words between 0.8- and 1.25-fold of the expected value.

words are compared with the MC(1) model, ∼11 000 words are
25% overrepresented. Thus, for three of the four random models,
the number of 25% overrepresented words in the real Pfam-AB-seg
sequences compared with the MC(1) model set is smaller than the
number found in the four different random synthetic protein sets.

We may miss differences in amino acid word choice between
real and random proteins because of the word lengths and residue
alphabet. To improve structural sensitivity, we analyzed the non-
redundant Pfam-AB database using a 10-letter structural alphabet
(Murphy et al., 2000) that allows us to look at five-residue word
clumps (Fig. 2F–J and Table 2). In our non-redundant CATH
structure database, β-strands and coils have a median length of 4,
while α-helices have a median length of 8 residues; five-residue
structural alphabet words span more than half of β-strands and coils,
and about one-third of α-helices.

Increasing the protein word length with a more structurally
informed alphabet has very little effect on the fraction of exceptional
words (Fig. 2). With the structural alphabet and five-residue words,
the simplest model, Bernoulli MC(0), reports that 12.4% of the
words are 25% overrepresented, slightly more than the 10.7% found
with four-residue words, while the most complex model (win10-
shuffled) finds that 3.3% of the words are 25% overrepresented,
slightly less than the 4.0% four-residue words. Although we expect
higher structural sensitivity, five-residue clump counts from a more
structurally informed alphabet have very few abundant exceptional
words.

314



Copyedited by: PSB MANUSCRIPT CATEGORY: ORIGINAL PAPER

[14:29 8/1/2010 Bioinformatics-btp660.tex] Page: 315 310–318

Protein sequences are random

Table 2. Overrepresented five-residue exceptional words under different
random models

Model and spacing Overrepresented exceptional words

1up2 1up3 1up5
>2 >1.50 >1.25

Bernoulli, MC(0)
(R2 0.95) i+1 4724 (4.7) 8352 (8.4) 12372 (12.4)

MC(1)
(R2 0.96) i+1 2369 (2.4) 4287 (4.3) 7303 (7.3)

shuffled
(R2 0.96) i+1 897 (0.9) 2144 (2.1) 5093 (5.1)

win10-shuffled
(R2 0.97) i+1 484 (0.5) 1196 (1.2) 3252 (3.3)

Consensus (3 of 4)
i+1 761 (0.8) 1641 (1.6) 3688 (3.7)
i+2 231 (0.2) 649 (0.6) 1864 (1.9)
i+3 448 (0.4) 632 (0.6) 950 (0.9)
i+4 64 (0.1) 138 (0.1) 398 (0.4)

Consensus (2 of 3)
i+1 896 (0.9) 2103 (2.1) 4875 (4.9)
i+2 239 (0.2) 710 (0.7) 2160 (2.2)
i+3 451 (0.5) 637 (0.6) 1020 (1.0)
i+4 66 (0.1) 144 (0.1) 419 (0.4)

Our sampling of exceptional words probably produces a mixture
of words—those identified because of shortcomings of our random
models and those that reflect structural constraints on proteins. To
enrich the signal caused by structural constraints, we identified
consensus exceptional words from the four random models. We
performed Venn diagram analysis to find exceptional words shared
between the different models in the 1up2, 1up3 and 1up5 groupings
(data not shown). Tables 1 and 2 show the number of words that are
labeled exceptional by three of the four random models, or two of
three random models, excluding the (MC(1) random model, which
potentially could capture some β-strand characteristics).

There are 9351 four-residue two of three model consensus words;
in general, they are more abundant than PfamAB words as a whole
(7611 of the words are more abundant than the median PfamAB
word). A list of the 50 most common four-residue consensus
exceptional words, with their relative abundance compared with the
average of the three random models, and their count and frequency
in our CATH structure sample, is shown in Supplementary Table 1.
Similarly, there are 4875 five-residue (10-letter) two of three model
words; 3741 are more abundant than the median 5mer PfamAB
clump (statistics for abundant five-residue words are shown in
Supplementary Table 3.)

These consensus exceptional words were examined more closely
to see if they shared evolutionary constraints or structural features.

3.3 Exceptional words are not enriched in conserved
positions within protein families

Our inability to detect substantial differences between real and
random protein sequences might be explained by the observation
that in many protein families, there are a relatively small number of
highly conserved sites that are believed to play critical functional
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Fig. 3. Conservation of consensus exceptional words. Fraction of words
versus Pfam-A HMM entropy (variation) in half bits. The most conserved
sites are on the right with low entropy values. (A) Consensus overrepresented
exceptional words [observed, 1up5, (i +1) spacing] compared randomly
sampled words (sampled). (B) Underrepresented words. Error bars report the
95% confidence intervals obtained by 500 bootstraps of the Pfam-A library
with replacement.

and structural roles, whereas the other positions in the protein
may be relatively free to diverge (Mirny and Shakhnovich, 2001;
Ptitsyn, 1998). The Pfam-A domain database provides high-quality
alignments and HMMs that can be used to identify conserved regions
in protein domains. However, Pfam-A is only ∼10% as large as
Pfam-AB, so we could not investigate whether conserved positions
within protein families contain exceptional words. Instead, we asked
whether the consensus exceptional words found from Pfam-AB-
seg were enriched in positions that are well conserved in protein
families.

The 6350 overrepresented and 6648 underrepresented consensus
three of four exceptional words were mapped onto a non-redundant
library of single PfamA representatives. Based on Pfam-A HMM
match states, invariant positions have an entropy score of 0; positions
that show no preference for an amino acid will have about 4-
bits of entropy, or an entropy half-bit score of 8. The entropy
profile for consensus exceptional words is indistinguishable from
the profile plotted for randomly sampled words (Fig. 3). The entropy
distributions for words at the i+2 through i+4 spacings look
similar and are not shown. The consensus exceptional words are
not enriched at conserved positions within Pfam-A domains.

3.4 Overrepresented exceptional words show some
preference for α-helix

Just as there are too few non-redundant Pfam-Asequences to identify
statistically exceptional words, there are also too few non-redundant
protein structures (our non-redundant CATH 3.1 topolog library
contains only 1084 sequences and ∼155 000 residues, <1% of Pfam-
AB, see Section 2) either to look for exceptional words or to identify
significant differences in word use in different secondary structural
elements. Of the 9351 consensus exceptional four-residue words,
6393 are found in our CATH topolog library, 3894 are found more
than once, but only 1313 are found four or more times. There are
2803 consensus exceptional five-residue words; 1798 are present
more than once and 960 are present four or more times. Despite
the small number of structural words, we can ask whether the set
of consensus exceptional words from Pfam-AB have a secondary
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A B

DC

Fig. 4. Secondary structure of consensus exceptional words. Consensus
exceptional words [two of three models, excluding MC(1)] within the
1up5 category from Tables 1 and 2 were mapped onto a representative
structure. Frequencies for α-helix, H; extended β-sheet, E; or random-coil,
L for each exceptional word are displayed in a triplot. (A, B) Four-residue
word preferences at spacings i+1 (A) and i+2 (B). (C, D) Five-residue
preferences at spacings i+1 (C) and i+2 (D). A point in the middle of
the plot is found equally frequently in the three secondary structures. The
filled circle represents the average secondary structure in our non-redundant
CATH dataset. The filled triangle shows the average secondary structure for
consensus overrepresented words. Bootstrapped 95% confidence intervals
are within the dimension of the symbols.

structure preference by mapping each consensus exceptional word
onto the aligned secondary structure positions.

Figure 4 shows the structural biases of the two of three consensus
exceptional words from i+1 to i+4; the i+2 spacing, which covers
7 (four-residue words) or 9 (five-residue words) residues, shows
the strongest bias. Our non-redundant CATH library contains 38%
α-helix (H), 20% extended sheet (E) and 42% loop (L). For four-
residue words, i+1 words are 44.7% H, 15.1% E and 40.1% L,
whereas i+2 words are 58.9% H, 11.6% E and 29.4% L. For five-
residue words, i+1 words are 54.3% H, 12.8% E and 32.9% L,
whereas i+2 words are 60.9% H, 10.1% E and 29.0% L. The
consensus overrepresented words thus show a preference for α-
helix secondary structure, with the i+2 spacing showing the largest
preference. The preference for α-helix reflects the preferences of the
most abundant words. Overall, for four-residue exceptional words
present four or more times in CATH structures, there are ∼3.1 times
more words present more frequently in α-helices than in β-strands
(based on the overall composition of the CATH structures, this ratio
should be 1.8); for the most abundant quartile of exceptional words
in known structures, that ratio increases to 7.3-fold. Supplementary
Table 1 shows the structural preferences of the 50 most abundant
consensus exceptional words; Supplementary Tables 2A and 4A
show the abundance and preferences of the 50 exceptional words
present four or more times with the strongest α-helical bias; each

of these words is present only in α-helix. Supplementary Tables 2B
and 4B shows the abundance and preferences of the 50 exceptional
words present four or more times with the strongest β-strand bias;
here, only one word is exclusively found in β-strand; none is found
in α-helix, but are frequently found in loops.

Exceptional words shared by three of four models, rather than two
of three, show a slightly greater preference for α-helix (1.23-fold at
i+1 and 1.57-fold at i+2 for four-residue words and 1.52-fold at
i+1 and 1.63-fold at i+2 for five-residue words). If exceptional
words shared by all models, rather than two of three, are used as
the consensus set, then the preference for the exceptional words
is further enhanced toward α-helix, but the number of exceptional
words is greatly reduced (data not shown). We found no secondary
structure preference (or avoidance) in underrepresented words (data
not shown).

4 DISCUSSION
Despite the protein word preferences seen in different secondary
structures, the landscape of four- and five-residue words in non-
redundant databases is well described by random sequence models.
Comparison of Pfam-AB to each of the four random models has R2

values >0.9; thus >90% of the observed variance in word counts is
explained by each random model. Using the more sensitive FDR
analysis, statistically exceptional Pfam-AB words have counts that
differ only slightly from the random models; the real-random count
differences are similar in magnitude to differences seen between
alternative random models. The apparent randomness of protein
sequences, when taken as a whole, suggests that secondary structure
word preferences do little to restrict the word composition of
proteins, consistent with the model that sequence largely drives
secondary structure, rather than vice-versa.

Our observation that local secondary structure preferences do
not significantly restrict overall amino acid word use in protein
sequences is consistent with a global process for protein folding,
where secondary structures form late in the process, but it certainly
does not rule out a hierarchical folding process in which secondary
structures form early. What it does show is that if the folding process
is hierarchical, secondary structures do not restrict sequence choice.
More realistically, it seems likely that protein families fold along a
spectrum from hierarchical to global, and across this spectrum, word
preferences appear largely random.

Our observations may also appear inconsistent with the relatively
high accuracy of secondary structure prediction algorithms, but we
believe this discrepancy is more apparent than real. The current best
secondary structure prediction programs achieve higher accuracy on
α-helices than on β-strands (Aydin et al., 2006), consistent with the
enrichment for α-helical structure found in our exceptional words.
Moreover, current secondary structure prediction improves from
about 70% to 80% Q3 accuracy when evolutionary conservation is
exploited; for single sequences in new folds, prediction accuracy
can be even lower (Aydin et al., 2006). Secondary structure
prediction accuracy on unrelated novel folds seems consistent with
our observations that word structural preferences do not restrict
overall protein sequence.

The small discrepancies that we find between non-redundant real
protein sequences and our random models may reflect structural
constraints on protein word use, or they may reflect the shortcomings
of our random models. Our two mathematically based models,
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the MC(0) or Bernoulli model, which simply produces protein
sequences with appropriate amino acid frequencies, and the MC(1)
model, which also preserves di-peptide frequencies, produce protein
sequences by sampling from a single average distribution of amino
acid or di-peptide frequencies. These models cannot produce protein
sequences with transmembrane domains, nor can they model buried
hydrophobic patches. Yet our least realistic random model, MC(0)
Bernoulli, suggests that only ∼1% of four-residue and 5% five-
residue words are 2-fold overrepresented in Pfam-AB-seg. We also
generated random sequences by shuffling real proteins; the win10-
shuffle model does preserve transmembrane composition. Less than
0.2% of four-residue, and ∼0.5% of five-residue words are 2-fold
overrepresented with shuffle random models. Mixtures of MC(1)
models with different composition biases would certainly reduce the
number of exceptional words, thus reducing the potential influence
of structural constraints. In general, we do not find constraints on
protein sequences that restrict protein word use in non-redundant
datasets.

While most words in proteins may be unconstrained, one might
expect that the most conserved positions in proteins have stronger
constraints on word use. We cannot address this question directly
using a 20- or 10-letter alphabet; there are too many possible protein
words to accurately sample either the Pfam-A or CATH datasets.
However, we can ask whether statistically exceptional words are
more conserved than randomly selected words—they are not.

We can also ask whether exceptional words have secondary
structure preferences; here it appears that there is a consistent
preference for α-helical regions in consensus overrepresented words,
particularly using five-residue words from the 10-letter structural
alphabet. While the total number of consensus exceptional words
is small, with <1% of the consensus exceptional words belonging
to this category (Tables 1 and 2), a consistent preference is seen
for words spanning from 4 (i+1, four-residue words) to 17 (i+4,
five-residue words) amino acids. It is reassuring that the structural
preference we find is for α-helices, since these structures involve
local H-bond interactions and are expected to reflect local sequence
constraints, and that the preferences become stronger as we sample
longer regions, as four residue is barely enough to form an α-helix.

Our major result—that protein sequences appear to be made up
of random words—conflicts with some earlier studies of amino
acid preferences and oligopeptide compositions in different genomes
(e.g. Pe’er et al., 2004). We believe that our analysis differs from
earlier work because we examine non-redundant protein databases.
Protein families have strong oligopeptide preferences that can be
used to identify homologs (Wu et al., 1996). Additional genome-
specific biases can be introduced by differences in amplification of
low-complexity regions. Human-RefSeq proteins are redundant and
biased because of low-complexity regions; the non-redundant Pfam-
AB-seg dataset has few statistically exceptional words. Indeed, all
the overabundant high-complexity words (TGE, HTG, YKC and
CGK) from Homo sapiens given in Table II from Pe’er et al. (2004)
are found in related zinc-finger proteins. Thus, although individual
genomes may have different amino acid and word compositions, we
suspect that much of their phylogenetic signal based on word counts
is due to genome-specific protein expansions.

Our results also stand in apparent contrast with recent success
in ab initio modeling of proteins at CASP6 by Rosetta, which
has been attributed to the incorporation of local sequence/structure
information from protein structure fragments from the PDB (Moult,

2005; Rohl et al., 2004). However, it is important to distinguish
the need to restrict protein structure search space, which Rosetta
does during fragment insertion (Rohl et al., 2004), from the need
to restrict protein sequence space. At the local level, different short
peptides may adapt similar structures; the mapping of local sequence
to local structure is redundant. Moreover, Rosetta combines both
local and global approaches to predict structure. Global interactions
are critical for accurate tertiary structure prediction (Rohl et al.,
2004), and Rosetta refines its initial conformations using a
global energy scoring function. The importance of the global energy
minimization is illustrated by the Baker lab’s recent success in
CASP7, where they used Rosetta@home to implement a global
all-atom refinement (Das et al., 2007; Jauch et al., 2007). Here,
for each target sequence, ab initio predictions used a remarkable
∼500 000 CPU hours that yielded some 105 −106 conformations
from which the best five were selected (Das et al., 2007).
Rosetta@home clearly surpassed the automated Robetta server
that utilized the same fragment insertion protocols, but lacked the
all-atom refinement (Das et al., 2007). Although current protein
structure data can effectively restrict structural search space, it need
not follow that sequence space is significantly restricted.

5 CONCLUSION
The small number of exceptional words and their modest
overabundance suggest that secondary structure constraints do not
strongly bias protein sequences as a whole. Globally, protein
sequences have very few local sequence constraints; it is very
difficult to distinguish real from random sequences.
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