Sequencing and assembly

The Seven Bridges of Königsberg

The Seven Bridges of Königsberg

- Find a tour through Königsberg that crosses every bridge exactly once
- Euler: route inside land doesn't matter, just the sequence of crossings
- Abstraction: Graph
- Land masses are vertices (nodes)
- Bridges are Edges

Graphs

- Many (overlapping) classes including:
- Directed (each edge has a direction) or undirected
- Weighted (each edge has a numeric weight) or unweighted
- Connected (a path exists between any pair of vertices)
- Can reduce some problems to finding a particular path or cycle in a particular graph

$G=\{V, E\}$

$V=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$E=\{(1,2),(1,9),(2,9),(2,3),(2,7),(3,4),(3,6),(3,7),(4,5),(5,6),(7,8),(7,12)(8,11),(9,10),(9,11),(11,12)\}$

Some path problems

Eulerian Path

- Königsberg bridge problem: find a path that visits each edge exactly once
- Not possible for the real Königsberg, Euler showed that for such a path to exist the graph must have exactly zero or two nodes of odd degree
- Such a path is now called an Eulerian Path, and an algorithm exists to find it it $O(|E|)$ time

Hamiltonian path

- A path that visits every vertex exactly once
- Hamiltonian cycle: returns to the starting vertex
- Both decision problems are NP-complete*

Traveling salesman problem

- Given a list of cities with known pairwise distances between them, find the shortest tour that visits every city exactly once
- Equivalent to finding the shortest Hamiltonian cycle in a complete weighted graph
- thus decision problem is NP-hard (and in fact, NP-complete)

Hamiltonian cycle

Sequencing

Sequencing longer molecules

- Goal: determine sequence of nucleotides in a DNA molecule
- Limitations of current methods:
- Require many copies of the fragment to be sequenced
- Can only sequence a limited number of bases for a given DNA molecule
- Consensus sequence of these identical short fragments: sequencing "reads"

Assembly as a string problem

- All reads came from the same string, thus we seek some superstring of the reads (a string which contains every read as a substring)
- There are (infinitely) many possible superstrings
- Which one do we want?
- Shotgun sequencing
- Break DNA into random fragments (in a way that yields overlapping fragments)
- Sequence from one or both ends of the short fragments
- Assembly
- Resolve original sequence from fragments

Assembly as a string problem

- All reads came from the same string, thus we seek some superstring of the reads (a string which contains every read as a substring)
- There are (infinitely) many possible superstrings
- Which one do we want? Makes sense to seek the shortest superstring of the data

Shortest superstring problem

- Input: a set of strings $s_{1}, \ldots s_{n}$.
- Output: a string s that contains all of $s_{1}, \ldots s_{n}$ as substrings, and which has the smallest possible length of all such superstrings

Graph representation solution

- Vertices: the n strings
- Edges: the edge between two nodes is - overlap (s_{i}, s_{j})
- overlap $\left(s_{i}, s_{j}\right)$ is the length of the longest prefix of s_{j} which is a suffix of s_{i}.
- Thus, pairs with large overlap have small weights
- Find the shortest path that visits every vertex exactly once

Complexity

Shortest Common Superstring

- Shortest Hamiltonian tour in a weighted graph is the Traveling Salesman Problem, which is NPcomplete
- And... we can show that any solution to the SCS problem requires solving the Hamiltonian path problem, and thus is NP-complete

Fragment assembly strategy

- Overlap-layout-consensus
- Overlap: find potentially overlapping reads
- Layout: order the reads
- Consensus: merge reads into a single sequence, correcting errors (hopefully)

Overlap: alignment

- Optimal overlap alignment
- However reads often have lower quality at ends
- Filtration approach
- Find pairs of reads that share a common k-mer
- Extend using local or global alignment
- Ignore if similarity is below some threshold
- Problems
- No efficient solution
- Doesn't allow for errors in sequencing reads
- Repeats: shortest reconstruction may not be correct reconstruction
- Find best match between a suffix of a read and a prefix of another
- But not an exact match, sequencing errors occur at 1% to 5% of positions depending on technology
- How can we find high scoring non-exact matches?

Layout

Layout: A greedy algorithm

- Overlap graph: nodes are reads, edges are similarity scores
- Layout: find a path through the graph that explains every read, while maximizing quality of overlap (alignment score)
- Still the Hamiltonian path problem

Layout example

Layout example

Sorted edges
(A,D)
(D, B)
(A,B)
(B,C)
(C,D)

- Iteratively add heaviest edges to path, as long as they are consistent
- In particular (simple):
- Sort edges by weight
- For each sorted edge, add it only if it would not result in the path branching

Layout example

Sorted edges
(A,D)
(D,B)
(A,B)
(B,C)
(C,D)

Layout example

Sorted edges
(A,D)
(D,B)
(A,B)
(B,C)
(C,D)

Layout example

Layout example

Sorted edges

(A,D)
(D, B)
(A,B)
(B,C)
(C,D)

Reject (A,B)

Path: $A \rightarrow D \rightarrow B$

Consensus

Practical problems: continuity

- Pairwise alignments between reads will specify a set of letters believe to represent the same position
- Simple: use the letter that occurs the most
- Complex: derive a multiple alignment, weight by quality

```
TAGAATTACACAGATTACTGA TTGATGGGGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAGGATTACACAGATMTACTGACTTCATGGGCGTAA CTA
TAGATTACACAGATTACTGACTTTGATGGGGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
```


Practical problems: repeats

- If repetitive regions are longer than the read length, cannot be resolved
- Merge reads up to potential repeat boundaries (need to detect repeat boundaries in layout and break paths)

Sorted edges
(A,D)
(D,B)
(A,B)
(B,C)
(C,D)

Accept (B,C)
Path: $A \rightarrow D \rightarrow B \rightarrow C$

- If not all of the sequence is represented in reads, may not be able to resolve the whole sequence (the graph may not be connected)
- The result is a set of contigs
- Other methods would be needed the order and orientation of the contigs

Even larger fragments

- This strategy was developed and used successfully for sequencing small regions ($\sim 50 \mathrm{~kb}$)
- How do we scale up to a whole genome?

History of WGA

(I stole this slide verbatim from Serafim Batzoglou)

Whole genome shotgun

Whole genome shotgun

sequencing

(Celera's assembly of the

 human genome)- Randomly fragment genomic DNA
- Select for fragments of a certain size
- Insert fragment into a plasmid, grow up bacteria to create many copies of each fragment
- Sequence from each end of the fragment

Shotgun assembly

- Merge reads into contigs as described previously

Shotgun assembly

- Merge reads into contigs as described previously
- Order contigs into scaffolds
- Mate-pair information provides order and approximate distance
- Multiple insert sizes can make this much more effective

Main problem: resolving repeats
Resolving long repeats

Hierarchical strategy

- Construct a set of large (100 to 200kb) clones, and sequence each independently with the shotgun approach
- Clones are mapped and selected to provide an ordered tiling of the genome
- Devised to eliminate long-range misassembly and reduce the risk of short-range misassembly
- Allows targeting specific regions of the genome for greater sequencing depth

Hierarchical shotgun sequencing

(The public human genome project)

Assembling short reads

- Problems with O-L-C approach
- Complexity: orders of magnitude more reads to deal with, challenging both for overlap and layout (even with heuristics approaches)
- Repeats: difficulty resolving repeats longer than read size much more problematic as reads get much shorter
- So, we can either get a lot more efficient, or find a new approach

Inspiration: sequencing by hybridization

Microarray (Affymetrix)

Universal array for all 4-mers

Inspiration: sequencing by hybridization

- What if we had a sequencing technology that could tell us all of the k-mers contained in a particular sequence?
- Such as a universal microarray
- Can we re-construct a sequence from all of its k mers?
- We can solve it in nearly the same way as the SCS problem
- Build a graph in which
- each node is a k-mer
- each (directed) edge between nodes s and t means the suffix of s is the prefix of t.

H

ATGCGTGGCA

ATGGCGTGCA

Solving the SBH problem

- We can solve it in nearly the same way as the SCS problem
- Build a graph in which
- each node is a k -mer
- each (directed) edge between nodes s and t means the suffix of s is the prefix of t.
- Find a path through the graph that visits every vertex exactly once
- Hamiltonian path, NP-complete

S=\{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT \}
Vertices correspond to (l-1)-tuples.
Edges correspond to 1 -tuples from the spectrum

Major problems with SBH

- Hard to detect exact k-mers (probes can hybridize with mismatches)
- Longer k-mers help, but this increases the array size exponentially

Finding an Eulerian path

SBH as an Eulerian path problem

- Instead of making the vertices k-mers, make them all the k-1 mers
- Each k-mer then defines exactly one edge in the graph
- This is called a "de Bruijn" graph
- Start at an arbitrary vertex v and form an arbitrary cycle (without using any edges twice)
- If the cycle is not Eulerian, it must contain some vertex w with unused edges, find a cycle from that vertex
- Combine and repeat

NGS \Leftrightarrow SBH

- Even with high-density microarrays, hard to build a universal array for a reasonable size k
- Ultra short read sequencing at high depth provides a more efficient way to find k-mers (for some k shorter than the read length)
- Thus: assemble short reads by using them to accurately determine the spectrum of a sequence and an Eulerian path approach

AAGACTCCGACTGGGACTTT

(a) de Bruijn graph of a sequence

Repeat graph

Challenges

- Sequencing errors affect the graph substantially
- Must correct somehow
- Resolving repeats
- de Bruijn graph is simplified and transformed into a repeat graph
- Goal of assembly: either transform the repeat graph so an Eulerian path can be found or find a simplified repeat graph (giving contigs)
- Can't resolve tandem repeat counts
de Bruijn graph

AAGACTCCGACTGGGACTTT

(a) de Bruijn graph of a sequence

Connecting contigs

- Can extract unique contiguous regions from the graph, but length is limited by the read length and inherent repeat structure of the sequence
- Two ways to improve this:
- Use some paired-end reads
- Use some long reads

Velevet: Pebble (paired ends)

- Primary scaffold
- For a given unique node, use all mate-pairs to estimate distance from that node to other unique nodes
- Iterate, to produce a set of estimated distances between all pairs of unique nodes
- Secondary scaffold
- Infer secondary neighbors from primary neighbors

1

2

Assisted assembly

Problems with comparative assembly

- Difficult to recover complex variation
- Small scale local rearrangement (segmental duplications) can be very hard to accurately sequence
- Paired reads can help to uncover rearrangements
- Harder to assemble any novel sequences not represented in the reference
- Hybrid approach: de novo assembly followed by referenced assembly

Gene boosted assembly

- Build an initial set of contigs and run gene prediction on them
- Where good predicted genes span contigs, use gene to orient contigs and fill in gaps by aligning reads to predicted amino acid sequence

Gene boosted assembly of P. aeruginosa

- Comparative assembly (using multiple references) for initials contigs
- Gene prediction on contigs
- For genes extending beyond or between contigs, align unassembled reads using tblastn
- For remaining unplaced reads, de novo assemble with velvet

(Salzberg et al. 2008)

High-quality draft assemblies of mammalian genomes from massively parallel sequence data
Sante Gnerre ${ }^{\text {a }}$, lain MacCallum ${ }^{\text {a }}$, Dariusz Przybylskia, Filipe J. Ribeiro ${ }^{\text {a }}$, Joshua N. Burton ${ }^{\text {a }}$, Bruce J. Walker ${ }^{\text {a }}$ Ted Sharpe ${ }^{a}$, Giles Halla, Terrance P. Shea ${ }^{\text {a }}$, Sean Sykes ${ }^{\mathrm{a}}$, Aaron M. Berlin ${ }^{\mathrm{a}}$, Daniel Aird ${ }^{\text {a }}$, Maura Costello ${ }^{\text {a }}$, Riza Daza ${ }^{\text {a }}$, Louise Williams ${ }^{\text {a }}$, Robert Nicol ${ }^{\text {a }}$, Andreas Gnirke ${ }^{\text {a }}$, Chad Nusbaum ${ }^{\text {a }}$, Eric S. Lander ${ }^{\text {a,b,c, }}$, and David B. Jaffe ${ }^{\text {a, }, 1}$
${ }^{2}$ Broad Institute of MIT and Harvard, Cambridge, MA 02142; 'Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 ; and
CDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115 'Department of Systems Biology, Harvard Medical School, Boston, MA 02115
Contributed by Eric S. Lander, November 23, 2010 (sent for review October 8, 2010)
$\begin{array}{ll}\text { Massively parallel DNA sequencing technologies are revolutioniz- } & \text { raised about the quality of de novo assemblies that can be con- } \\ \text { ing genomics by making it possible to generate billions of } \\ \text { structed from such data }\end{array}$ ing genomics by making it possible to generate billions of structed from such data (13).
relatively short (~ 100-base) sequence reads at very low cost. Here, we describe an algorithm and software pat Whereas such data can be readily used for a wide range of bio- HATHS-LG for de novo assembly of large (and small) genomes. medical applications, it has proven difficult to use them to gener- We demonstrate the power of the approach by applying it to ate high-quality de novo genome assemblies of large, repeat-rich massively parallel sequence data generated from both the human vertebrate genomes. To date, the genome assemblies generated and the mouse genomes. The results approach the quality of as-
from such data have fallen far short of those obtained with the $\begin{array}{ll}\text { from such data have fallen far short of those obtained with the } & \text { semblies obtainable with capillary-based sequencing in terms of } \\ \text { older (but much more expensive) capillary-based sequencing ap- } & \begin{array}{l}\text { completeness, contiguity, connectivity, and accuracy . The un- }\end{array}\end{array}$ proach. Here, we report the development of an algorithm for ge- covered regions of the genome consist largely of repetitive senome assembly, ALLPATHS-LG, and its application to massively quences, with segmental duplications remaining a particularly parallel DNA sequence data from the human and mouse genomes, important challenge. The results indicate that it should be possigenerated on the Illumina platform. The resulting draft genome ble to generate high-quality draft assemblies of large genomes at connectivity, and coverage of the genome. In particular, the base accuracy is high ($\geq 99.95 \%$) and the scaffold sizes (N50 size $=11.5$ with capillary-based sequencing. The combination of improved with capillary-based sequencing. The combination of improved Model for Input Data. De novo genome assembly depends both on sequencing technology and improved computational methods of sequence data used as input. For capillary-based sequencing, should now make it possible to increase dramatically the de de genome scientitsts ultimately converged around a fairly standard novo sequencing of large genomes. The ALLPATHS-LG program model, specifying the desired coverage from libraries of various
is available at http://www.broadinstitute.org/science/programs/ $\begin{array}{ll}\begin{array}{l}\text { is available at http://www.broadinstitute.org/science/programs/ } \\ \text { genome-biology/crd. }\end{array} & \begin{array}{l}\text { insert sizes. For massively parallel sequencing data, we specify } \\ \text { such a model in Table } 1 .\end{array}\end{array}$ such a model in Table l.
We adopted this model for several reasons. First, it requires

Allpaths-LG: Model for sequencing

Allpaths-LG key innovations

- Better recipes and protocols for library prep, more even representation of sequences
- "read doubling" to span repetitive regions
- Hierarchical approach to low coverage regions
"Read doubling"
${ }^{\dagger}$ More generally, the inserts for the fragment libraries should be equal to ~ 1.8 times the sequencing read length. In this way, the reads from the two ends overlap by $\sim 20 \%$ and can be merged to create a single longer read. The current sequencing read length is ~ 100 bases.
${ }^{\ddagger}$ Long and Fosmid jumps are a recommended option to create greater continuity.
*Inserts are sequenced from both ends, to provide the specified coverage.
Table 1. Provisional sequencing model for de novo assembly

Libraries, insert types*	Fragment size, bp	Read length, bases	Sequence coverage, \times	Required
Fragment	180^{\dagger}	≥ 100	45	Yes
Short jump	3,000	≥ 100 preferable	45	Yes
Long jump	6,000	≥ 100 preferable	5	No^{\ddagger}
Fosmid jump	40,000	≥ 26	1	No^{\ddagger}

Table 3. Human and mouse assemblies

Assemblies:	Human				Mouse		
Assembly no.:	$\begin{gathered} 1 \\ \text { Illumina } \end{gathered}$		$\begin{gathered} 2 \\ \text { Illumina } \\ \text { SOAP } \end{gathered}$	$\begin{gathered} 3 \\ \text { ABI3730 } \end{gathered}$Celera	4 Illumina ALLPATHS-LG	$\begin{gathered} 5 \\ \text { Illumina } \\ \text { SOAP } \end{gathered}$	$\begin{gathered} 6 \\ \text { ABI3730 } \\ \text { ARACHNE } \end{gathered}$
Sequence data:							
Program:	ALLPATH	-LG					
Completeness							
Covered, \%	91.1		74.3	96.2	88.7	86.2	94.2
Captured, \%	6.6		18.6	1.3	8.6	8.0	3.8
Uncaptured, \%	2.3		7.0	2.5	2.7	5.7	2.0
Segmental duplication coverage, \%	41.1		12.1	62.2	42.3	27.9	65.7
Exon bases covered, \%	95.1		81.2	96.2	96.7	92.4	97.3
Continuity							
Contig N50, kb	24		5.5	109	16	16	25
Scaffold N50, kb	11,543		399	17,646	7,156	340	16,871
Contig accuracy							
Ambiguous bases, \%	0.08		0	0	0.04	0	0
1 -kb chunks vs. reference	NA12878	GRC	GRC	GRC	B6	B6	B6
(l) perfect	77.1				88.6	76.8	78.0
(II) $\leq 0.1 \%$ error rate	8.7				2.5	2.9	7.0
(III) $\leq 1 \%$	10.2				5.7	6.1	11.7
(IV) $\leq 10 \%$	3.1	3.6	5.5	3.6	2.8	11.8	2.4
(V) $>10 \%$	0.4	0.4	0.7	0.5	0.2	2.4	0.3
Base quality, from I-III	Q33				Q36	Q35	Q33
Misassembly \% of 1-kb chunks, from IV-V	3.5	4.0	6.2	4.1	3.0	14.2	2.7
Scaffold accuracy							
Validity at 100 kb , \%	99.1		99.5	99.7	99.0	98.8	99.1

THE MSNEMBITHON

Assemblathon 1: A competitive assessment of de novo short read assembly methods
Dent A. Earl, Keith Bradnam, John St. John, et al.
Genome Res. published online September 16, 2011
Access the most recent version at doi:10.1101/gr.126599.111

ID	Affiliations	Entries	Software	Used β
ASTR	Agency for Science, Technology and Research, Singapore	1	PE-Assembler	No
WTSI-P	Wellcome Trust Sanger Institute, UK	2	Phusion2, phrap	No
EBI	European Bioinformatics Institute, UK	2	SGA, BWA, Curtain, Velvet	No
wTSI-S	Wellcome Trust Sanger Insitute, UK	4	SGA	No
CRACS	Center for Research in Advanced Computing Systems, Portugal	3	ABySS	Yes
BCCGSC	BC Cancer Genome Sciences Centre, Canada	5	ABySS, Anchor	No
DOEJGI	DOE Joint Genome Insititute, USA	1	Meraculous	No
IRISA	L'IRISA (Institut de recherche en informatique et systèmes aléatoires), France	5	Monument	No
CSHL	CSHL (Cold Spring Harbor Laboratory), USA	2	Quake, Celera, Bambus 2	No*
DCISU	Department of Computer Science, Iowa State University	1	PCAP	No
IoBUGA	Computational Systems Biology Laboratory, University of Georgia, USA	3	Seqclean, SOAPdenovo	No
UCSF	UC San Francicso, USA	1	PRICE	Yes
RHUL	Royal Holloway, University of London, UK	5	OligoZip	No
GACWT	The Genome Analysis Centre, Sainsbury Laboratory, and Wellcome Trust Centre for Human Genetics, UK	3	Cortex_con_rp	No
CIUoC	Department of Computer Science, University of Chicago, USA	1	Kiki	No
BGI	BGI, Shenzhen China	1	SOAPdenovo	No
Broad	Broad Institute	1	ALLPATHS-LG	No
nVelv	-	6	Velvet	No
$\underset{\text { nABLCS }}{\text { nCl }}$	-	9 6	$\underset{\text { ABySS }}{\text { CLC }}$	No No

Two simulated genomes using evolver, simulated reads from first genome used for assembly

ID \| Overall		NG50 SPNG		Struct	CC50	Subs	Copy Num.	Cov. Tot.	enic
${ }^{\text {Broad }}$	${ }_{37}^{31}$	${ }^{2}(7.25 e+04)$	2.11	${ }^{3}(124$	2.66	2.92	${ }^{11(6.717-02)}$	${ }^{6}$ (9)	${ }^{(93.8)}$
$\underbrace{\text { cel }}_{\substack{\text { BGI } \\ \text { TSI-S }}}$	37 38	9 (2.480	${ }_{6}^{6}$ (1.1.9	-$6(1878)$ $2(475)$	3 (1.12	11 (1.20e	2) ${ }^{2}(6.75$	${ }_{8}^{1}$ (98)	\%$3(92.7)$ $5(91.8)$
	44	(1.15	${ }^{2}$ (4.868	$1(456)$	2 (1.89e	3e-07)	7 (5.42e-02)	${ }^{11}(97.3)$	
Cracs	${ }_{58}^{57}$			4 (11666)	${ }_{4}(8.61 \mathrm{e}$ e+05)	${ }^{\text {c }}$ (3.88e-0.07)			
EGSC	${ }_{60}^{58}$	${ }_{5}^{11}(3.63 \mathrm{Se+04})$	${ }_{4}(1.46 \mathrm{e}+05)$	${ }_{10}(288$	8 (3.22e+05)	7,	${ }^{12}$	$\underset{\text { 2 }}{14}$	
		16 (9.39e+03)	7 (1.13e+05)	7	(6 (517e-0			
A	${ }_{65}^{64}$	$7{ }_{7}$	12 (3.54e	15	5 (6.47e 05	15 (3.80e-05)	${ }_{3}^{18.388}$		
	71	20e+04)	31 e		15 (1.59e+04)		5 (4.77e-02)		
	${ }^{74}$	04)	11 (4.21e+04)						
							${ }^{13}$ (6.9	15 (94	$12(79$
	100	${ }^{10}$ (1.99e+04)	(s.	-$5(1731)$ $11(3725)$		17	19 (3.17e-01)		
${ }_{\text {ASTR }}^{\text {IRISA }}$	${ }_{106}^{103}$	${ }_{\substack{17 \\ 8(8.20 e+03) \\ 8(2.52 e+04)}}$		$\underset{\substack{18 \\ \hline(2818)}}{ }$			18 18 (2.88e-01)	${ }_{17} 17$ (90.9)	14
	114	18 (5.65e+03)	15 (2.75e+04)	18 (8826)	11 (1.27e+05)	18 (6.21e-05)	10 (6.22e-02)	13 (96.5)	
${ }^{\text {nCLC }}$	115	15 (9.47e+03)	18 (9.54e+03)	16 (72	18 (4.36e+03)	10 (1.11e-05)	8 (5.61e-12)	12 (97.2)	18 (55
	138 149	${ }_{\text {l }}^{12}$ (1.35e+04)		${ }_{17}^{20}$ (29887)	${ }^{17}$ (6.84e+03)			19	16(59.6)
$\mathrm{ClUoC}^{\text {a }}$	${ }_{152}$	${ }^{29}(5.60 \mathrm{e}+03)$	${ }_{20}^{19}(5.60 \mathrm{e}+03)$	19 (11282)	10 ${ }^{19}$	19 (1.11e-04)	20 (1.98e-01)	(18(${ }_{20}(78.5$)	(19 (48.9)

Next: Hybrid assembly

- Long (454, PacBio) reads can span gaps but are error prone and expensive
- Use for scaffolding contigs assembled from short reads where more errors can be tolerated
- Correct errors first using short-reads

Error correction is crucial

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

2. Correction Algorithm

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. II:RII6

