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The Bridge Obsession Problem

Bridges of Königsberg

Find a tour crossing every bridge just once
Leonhard Euler, 1735 

The Seven Bridges of Königsberg

• Find a tour through Königsberg that crosses 
every bridge exactly once 

• Euler: route inside land doesn’t matter, just the 
sequence of crossings 

• Abstraction: Graph 

• Land masses are vertices (nodes) 

• Bridges are Edges
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Eulerian Cycle Problem

• Find a cycle that 
visits every edge 

exactly once

• Linear time

More complicated Königsberg 
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Eulerian Cycle Problem

• Find a cycle that 
visits every edge 

exactly once

• Linear time

More complicated Königsberg 

G = { V, E } 
V = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 
E = { (1,2), (1,9), (2,9), (2,3), (2,7), (3,4), (3,6), (3,7), (4,5), (5,6), (7,8), (7,12) (8,11), (9,10), (9,11), (11,12)}

⇔

Graphs

• Many (overlapping) classes including: 

• Directed (each edge has a direction) or 
undirected 

• Weighted (each edge has a numeric weight) or 
unweighted 

• Connected (a path exists between any pair of 
vertices) 

• Can reduce some problems to finding a particular 
path or cycle in a particular graph



Some path problems

• In a (possibly weighted) graph, find: 

• Shortest path between two vertices  

• Longest path between two vertices 

• (global sequence alignment)

Eulerian Path

• Königsberg bridge problem: find a path that visits 
each edge exactly once 

• Not possible for the real Königsberg, Euler 
showed that for such a path to exist the graph 
must have exactly zero or two nodes of odd 
degree 

• Such a path is now called an Eulerian Path, and an 
algorithm exists to find it it O(|E|) time

Hamiltonian path

• A path that visits every vertex exactly once 

• Hamiltonian cycle: returns to the starting vertex 

• Both decision problems are NP-complete*

*a solution can be verified in polynomial time, 
but there is no know fast algorithm to find a solution

Hamiltonian cycle

Traveling salesman problem

• Given a list of cities with known pairwise 
distances between them, find the shortest tour 
that visits every city exactly once 

• Equivalent to finding the shortest Hamiltonian 
cycle in a complete weighted graph 

• thus decision problem is NP-hard  
(and in fact, NP-complete)

Sequencing DNA



Sequencing

• Goal: determine sequence of nucleotides in a 
DNA molecule 

• Limitations of current methods: 

• Require many copies of the fragment to be 
sequenced 

• Can only sequence a limited number of bases 
for a given DNA molecule 

• Consensus sequence of these identical short 
fragments: sequencing “reads”

Sequencing longer molecules

• Shotgun sequencing 

• Break DNA into random fragments (in a way 
that yields overlapping fragments) 

• Sequence from one or both ends of the short 
fragments 

• Assembly 

• Resolve original sequence from fragments

Assembly as a string problem

• All reads came from the same string, thus we seek 
some superstring of the reads (a string which 
contains every read as a substring) 

• There are (infinitely) many possible 
superstrings 

• Which one do we want?                                                

Assembly as a string problem

• All reads came from the same string, thus we seek 
some superstring of the reads (a string which 
contains every read as a substring) 

• There are (infinitely) many possible 
superstrings 

• Which one do we want? Makes sense to seek 
the shortest superstring of the data

Shortest superstring problem

• Input: a set of strings s1, ... sn. 

• Output: a string s that contains all of s1, ... sn as 
substrings, and which has the smallest possible 
length of all such superstrings

Graph representation solution

• Vertices: the n strings 

• Edges: the edge between two nodes is  
- overlap(si, sj)  

• overlap(si, sj) is the length of the longest prefix 
of sj which is a suffix of si. 

• Thus, pairs with large overlap have small 
weights 

• Find the shortest path that visits every vertex 
exactly once



Complexity

• Shortest Hamiltonian tour in a weighted graph is 
the Traveling Salesman Problem, which is NP-
complete 

• And... we can show that any solution to the SCS 
problem requires solving the Hamiltonian path 
problem, and thus is NP-complete

Shortest Common Superstring

• Problems 

• No efficient solution 

• Doesn’t allow for errors in sequencing reads 

• Repeats: shortest reconstruction may not be 
correct reconstruction

Fragment assembly strategy

• Overlap-layout-consensus 

• Overlap: find potentially overlapping reads 

• Layout: order the reads  

• Consensus: merge reads into a single sequence, 
correcting errors (hopefully)

Overlap

• Find best match between a suffix of a read and a 
prefix of another 

• But not an exact match, sequencing errors 
occur at 1% to 5% of positions depending on 
technology 

• How can we find high scoring non-exact 
matches?

Overlap: alignment

• Optimal overlap alignment 

• However reads often have lower quality at ends 

• Filtration approach 

• Find pairs of reads that share a common k-mer 

• Extend using local or global alignment 

• Ignore if similarity is below some threshold

Overlap: alignment

• Dealing with quality 

• Let local alignment handle it, or incorporate 
quality into alignment (PHRAP) 

• Trim low quality regions 

• Some k-mers occur extremely frequently 
(repeats) 

• Discard k-mers that occur more frequently 
than some amount (derived from the 
expected sequence coverage)



Layout

• Overlap graph: nodes are reads, edges are 
similarity scores 

• Layout: find a path through the graph that 
explains every read, while maximizing quality of 
overlap (alignment score) 

• Still the Hamiltonian path problem

Layout: A greedy algorithm

• Iteratively add heaviest edges to path, as long as 
they are consistent 

• In particular (simple): 

• Sort edges by weight 

• For each sorted edge, add it only if it would not 
result in the path branching

Layout example
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Sorted edges 
(A,D) 
(D,B) 
(A,B) 
(B,C) 
(C,D)

Layout example
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Sorted edges 
(A,D) 
(D,B) 
(A,B) 
(B,C) 
(C,D)

Add (A,D) 

Path: A→D

Layout example
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2

Sorted edges 
(A,D) 
(D,B) 
(A,B) 
(B,C) 
(C,D)

Add (D,B) 

Path: A→D →B



Layout example

A

B

D

C

3

1

1

2

Sorted edges 
(A,D) 
(D,B) 
(A,B) 
(B,C) 
(C,D)

Reject (A,B) 

Path: A→D →B

Layout example

A

B

D

C

3

1

1

2

Sorted edges 
(A,D) 
(D,B) 
(A,B) 
(B,C) 
(C,D)

Accept (B,C) 

Path: A→D →B→C

Consensus

• Pairwise alignments between reads will specify a 
set of letters believe to represent the same 
position 

• Simple: use the letter that occurs the most 

• Complex: derive a multiple alignment, weight 
by quality

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGCGTAAACTA 

TAG TTACACAGATTATTGACTTCATGGCGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGGGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 

Practical problems: continuity

• If not all of the sequence is represented in reads, 
may not be able to resolve the whole sequence 
(the graph may not be connected) 

• The result is a set of contigs 

• Other methods would be needed the order and 
orientation of the contigs

Practical problems: repeats

• If repetitive regions are longer than the read 
length, cannot be resolved 

• Merge reads up to potential repeat boundaries 
(need to detect repeat boundaries in layout and 
break paths)

repeat region 

Unique Contig 

Overcollapsed Contig 



Even larger fragments

• This strategy was developed and used 
successfully for sequencing small regions (~50kb) 

• How do we scale up to a whole genome?

History of WGA 

•  1982: λ-virus, 48,502 bp  

•  1995: h-influenzae, 1 Mbp   

•  2000: fly, 100 Mbp 

•  2001 – present 

  human (3Gbp), mouse (2.5Gbp), rat*, chicken, dog, chimpanzee, 

several fungal genomes 

Gene Myers 

Let’s sequence 
the human 

genome with the 
shotgun strategy 

That is 
impossible, and a 
bad idea anyway Phil Green 

1997 

(I stole this slide verbatim from Serafim Batzoglou)

Whole genome shotgun 
sequencing 

(Celera’s assembly of the  
human genome)

Whole genome shotgun

• Randomly fragment genomic DNA 

• Select for fragments of a certain size 

• Insert fragment into a plasmid, grow up bacteria 
to create many copies of each fragment 

• Sequence from each end of the fragment

Shotgun assembly

• Merge reads into contigs as described previously



Shotgun assembly

• Merge reads into contigs as described previously 

• Order contigs into scaffolds 

• Mate-pair information provides order and 
approximate distance  

• Multiple insert sizes can make this much more 
effective
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the map or clone coverage of such a project as m– =
CI–/G, where the number of clones C is R/2 in
the current context. From the definitions it fol-
lows that m– = c–(I–/ 2L–) is larger than c–, so there
are a factor of fewer gaps in the coverage
of the source by inserts than there are gaps in the
coverage of the source by reads. For example, if
inserts are 5 kbp long, there are a factor of e−5 or
148 fewer clone gaps than sequence gaps. From
another viewpoint, scaffolds are on average 148
times larger than contigs, so that for 7.5X se-
quencing project of a 200-kbp source, we would
expect all the contigs to be ordered by the mate
information.

Recent simulation studies have indicated that
from a purely informatic perspective, there is an
advantage in using long inserts and no advantage
in having some percentage of the reads be un-
paired.13 However, this finding must be tem-
pered against the experimental fact that because
of the different cloning vehicles required to serve
as the vector as the insert becomes larger, it is
more difficult to sequence the ends of long in-
serts, and greater care must be taken to avoid
chimeric clones. Counterbalancing economic
pressure thus encourages the use of single reads
and shorter inserts. Fortunately, we lose little of
the benefits of having long end-sequenced in-
serts in hybrid schemas where a sizable fraction
of a project is single reads and where the paired
reads are from inserts over a distribution of in-
sert lengths skewed to the shorter lengths.

Sequencing the human and other
whole genomes
After the idea that the human genome could be
sequenced began to be discussed in the early to

mid 1980s, the US National Institutes
of Health and Department of Energy
announced the start of the Human
Genome Program (HGP) in 1990,
with an objective to do so by 2005 in
concert with the UK’s Sanger Centre
and other laboratories in Europe and
Japan.14 A single approach, described next, was
adopted and continues to be followed. In the last
few years, several interesting alternative strategies
have emerged, and I describe two of these as well,
the last of which Celera Genomics is actually pur-
suing. This latter plan has a potential to produce
the entire sequence in two years time—by 2001—
at one tenth the cost of the HGP.

The clone-by-clone approach
The HGP proposal involves a hierarchical two-
tiered approach. This approach first randomly
fractures the whole human DNA sequence into
50- to 300-kbp pieces and inserts them into
BACs, which are a vector mechanism designed to
accommodate such large DNA segments. The re-
sulting collection of BAC inserts is maintained in
a library from which investigators can select a par-
ticular BAC insert to amplify for further experi-
mentation. The first step consists of determining
an assembly, or physical map, of these large inserts
that covers the human genome. Given a physical
map, the investigators then pick a minimal tiling
set of the inserts that covers the genome. At the
second level, they shotgun-sequence each of the
inserts in the tiling set. This has been coined a
clone-by-clone approach because once we have the
tiling set of BAC clones, we conceptually imag-
ine sequencing each tiling clone in a march across
the genome (see Figure 2).

The term physical map stems from the obser-
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Mates

PCRPCR

Insert

Read1 Read2

Vector

Gap 1 Gap 2
Contig 3Contig 2

Scaffold = {Contig 1, Contig 2, Contig 3}

Contig 1

Figure 1. Mates, contigs,
gaps, and scaffolds. The
top of the figure shows a
blue vector with a green
insert for which read reac-
tions are primed at both
ends. A light green dashed
arc depicts the relation-
ship between the reads
and is used within the as-
sembly shown below it.
The relative order of the
differently colored three
contigs is fixed by the
mate pairings. We then
prime PCR reactions across
the two gaps (primers in
red, polymerase chain re-
actions sequence in gold).
The three contigs in ag-
gregate constitute a single
scaffold.

Main problem: resolving repeats

repeat region 

Unique Contig 

Overcollapsed Contig 

quence, namely, fragments.
Screener. Each input fragment was

checked for matches to known repetitive el-
ements, either noting matched regions, a soft
screen, or masking them from further consid-
eration, a hard screen. For Drosophila, the
library of known repetitive elements was a
manually curated list of its ribosomal DNA,
histones, heterochromatin, and known retro-
transposons. We chose to hard screen match-
es to ribosomal and heterochromatic DNA.
This implies that these portions of the ge-
nome would not be assembled, because over-
laps interior to masked regions were not com-
puted. However, this is consistent with the
implicit goal of all sequencing efforts, that is,
to determine the sequence of the euchromatic
segments of the genome.

Only 2.50% of the sequence matched het-
erochromatin, and almost all such matches
covered only part of a read, confirming that
heterochromatic sequence does not clone in
our larger inserts. For the other hard-screened
items, 3.01% of the sequence matched ribo-
somal sequence, 0.38% matched histones,
and 0.13% was microsatellite sequence found
by a de novo low-complexity sequence de-
tector. Retrotransposons matched 7.26% of
the incoming sequence, and 1.48% matched
other known moderate repeats. Unfortunate-
ly, we had to hard screen 1.51% of the data
matching a retrotransposon found in the ribo-
somal DNA, and we conjecture that this may
be the cause of several repeat-sized gaps
remaining in our assembly. In total, 7.53% of
the data were hard screened and 8.74% were
soft screened.

Overlapper. Each fragment was compared
with all fragments previously examined in
search of overlaps with fewer than 6% differ-

ences and involving at least 40 bp of un-
masked sequence. Any overlap meeting this
criterion must be either true or repeat-induced
(Fig. 2). Our methodology is similar to the
seed-and-extend idea developed for BLAST
(22), save that our implementation, tuned for
high-stringency matches, compares 32 mil-
lion pairs of reads every second. Even so, the
total CPU time required mandated the use of
parallel processing. The overlapper was orga-
nized to compare two batches of sequences,
taking care not to compare reads against
themselves if the two batches happened to
be the same set of sequences. With this sim-
ple distributed architecture and a controlling
program to collate results, the computation
could be spread across as many processors as
desired.

For the WGS data set, 212 million over-
laps were computed for an average of 33.7
overlaps per fragment end. However, this is
misleading, as one has essentially a Poisson
distribution with mean 13.7 and a very long
tail of fragments with up to 4000 overlaps at
a given end. The fragments with very large
numbers of overlaps are clearly portions of
repeats.

Unitigger. Collections of fragments whose
arrangement is uncontested by overlaps from
other fragments were assembled into what we
call unitigs. Each unitig was assessed as to
whether it represented unique or repetitive
sequence. Those certain to represent unique
DNA were designated U-unitigs. Potential
boundaries of repeat sequences were sought
at the tips of the U-unitigs, and those found
were used to extend U-unitig ends as far as
possible into a repeat.

Mathematically, a unitig is a maximal in-
terval subgraph of the graph of all fragment

overlaps for which there are no conflicting
overlaps to an interior vertex. This idea was
originally explored by Myers (23) and ex-
tended by us to treat the case in which one
read entirely matches a subsegment of anoth-
er (Fig. 3). After this step, one goes from
3.158 million fragments to 54,000 unitigs
with two or more fragments, and from 221
million overlaps to 3.104 million between
unitigs: 48- and 68-fold reductions in prob-
lem size, respectively.

Almost every unitig is a correct subassem-
bly of fragments. The exception occurs when
a set of reads sampled from the interior of
copies of a very high fidelity repeat (X! " X #
in Fig. 3) overcollapses into a unitig because
they all form a consistent subassembly of the
repeat’s interior. We detect these unitigs by
computing an A-statistic that is the log-odds
ratio of the probability that the distribution of
fragment start points is representative of a
correct versus an overcollapsed unitig of two
repeat copies (24). In all of our simulation
runs, including synthetic genomes as large as
100 Mbp, we never encountered an incorrect-
ly assembled unitig with a score greater than
10. We term unitigs with an A-statistic greater
than 10 “U-unitigs” as they almost certainly
represent unique DNA in the genome that has
been correctly assembled. We found 9413
U-unitigs with an average length of 12.2 kbp
and totaling 115.4 Mbp of sequence.

By detecting repeat boundaries, we could
identify and remove some of the repetitive
overlaps between unitigs. Whenever a unitig
A overlaps two unitigs B and C at one end,
then by construction the initial portions of B
and C align, but at some point B and C fail to
overlap and we can find this repeat boundary
accurately with dynamic programming. We
found 8570 repeat boundaries in the WGS
data set and simulations support the conclu-
sion that they represent 90% of all such
boundaries. Any overlap from U-unitig X to
unitig Y entirely on the repeat side of a
boundary can safely be eliminated if there is
another overlap, not so contained, whose des-
tination does not overlap Y. This enables
further U-unitig extension, on the order of a
read length, into a repetitive region. Repeti-
tive elements shorter than the average read
length were effectively resolved. After this
process, the number of U-unitigs reduces to
8389, and their average size increases by 1.7
kbp to 13.9 kbp, for a total of 116.3 Mbp in
U-unitigs.

Scaffolder. All possible U-unitigs with
mutually confirming pairs of mates or BAC
ends were linked into scaffolds consisting of
a set of ordered, oriented contigs for which
the size of the intervening gaps is approxi-
mately known (Fig. 4). When the left and
right reads of a mate are in different unitigs,
their distance relation orients the two unitigs
and provides an estimate of the distance be-

Fig. 2. True and repeat overlaps. Con-
sider two fragments A and B that
overlap as shown at left. There are
two possible conclusions depicted at
right: (i) the fragments were sampled
from overlapping segments of the ge-
nome and so belong together in an assembly, a true overlap, or (ii) the overlapping portion is part
of a repeated sequence that occurs multiple times in the genome, and the two reads do not belong
together, a repeat overlap. Assembly would be a trivial matter if we could divine all the true
overlaps; the key objective is to conservatively find true overlaps and to avoid the repetitive ones,
especially early in the assembly process.

Target

Fragments

A C

B

X’+X"

repeat boundary

U-unitig

overcollapsed unitig

X’A B X" C
Fig. 3. Unitigs and repeat
boundaries. Consider the hypo-
thetical genome consisting of
three unique stretches A, B, and
C with two nearly identical, in-
terspersed copies, X! and X#, of a
repeat element X. This results in
the four unitigs and overlaps
shown. As explained in the text
the unitig X! " X# is overcol-
lapsed, and the U-unitigs for re-
gions A, B, and C have repeat
boundaries indicating the tail
portions that project into X.
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Resolving long repeats



tween them. Unfortunately, this relation is
false 0.34% of the time, and so one cannot
trust the given inference. However, if two or
more mates consistently indicate a given ori-
entation and separation between two
U-unitigs, the inference is estimated to be
wrong only 1 in 1015 times. We first found
bundles of mate pairs and overlaps that con-
sistently place unitigs relative to each other.
When these bundles had several contributing
links, we computed a tighter expected aver-
age distance and deviation between the
unitigs, especially when an overlap between
them was part of the bundle. There were
approximately 20,000 confirmed bundles be-
tween unitigs averaging 10.6 mate pairs per
bundle.

In analogy to the unitigger, all sets of
U-unitigs that were consistently ordered and
placed by confirmed bundles, that is, contain-
ing two or more 2-kbp or 10-kbp links, were
assembled into a scaffold of contigs where a
contig is, at this stage, a series of overlapping
U-unitigs. We then ordered and placed these
scaffolds using a best-first selection of BAC
bundles (that is, one involving a BAC mate)
ordered on the number of links in the bundle.
The normal distribution distance estimates
between contigs were then refined on the
basis of a least squares estimation by using all
link estimations consistent with the scaffold-
ing. The 24,000 bundles among the 8391
U-unitigs were distilled by the scaffolding
into 3736 contigs of average size 30,631 bp
with 5973 bundles between contigs support-
ing their order. At the end of this step we
essentially had the euchromatic, nonrepeti-
tive portion of the genome assembled and
ordered.

Repeat resolution: rocks, stones, pebbles.
Both intra- and interscaffold gaps were filled
in a series of three, increasingly more aggres-
sive, levels of repeat resolution. The rock-
phase placed unitigs that were consistently
positioned by at least two mate pairs, the
stone-phase placed unitigs that were posi-
tioned by a single mate pair and confirmable
by an overlap tiling across the gap containing
it, and the pebble-phase attempted to find the
best tiling across gaps using a quality-value
based measure of significance.

Rocks are unitigs that have a positive
A-statistic and have either two mate links that
consistently link it to contigs on one or both
sides or four or more links, where at most one
does not agree with the others. In simulations,
rock placements were always correct. For
WGS data, 2827 rocks of average length
1035 bp were placed, closing 667 gaps of
average width 457 bp and providing 1.70
Mbp of new assembled sequence.

All remaining unitigs have no confirmed
bundles linking them to the assembly scaf-
fold. Stones have only a single mate link to a
contig on one side or another of a gap, but we

further require that there be an overlap-based
tiling of unitigs that fills the gap and includes
the stone. The tiling path supports the stone,
and we found such placement to be erroneous
rarely in simulations, and only when the
stone was so close to the sequence of the
repeat copy that the impact on the accuracy of
the reconstructed sequence was minimal. For
WGS data, 160 stones of average length 1611
bp were placed, closing 77 gaps of average
width 1327 bp and providing 144 kbp of new
assembled sequence.

We then proceeded to find the best over-
lap tiling of unitigs across each gap, where
any existed. As our measure of goodness,
we used a log-odds ratio of the probability
that an overlap is true versus repeat-in-
duced on the basis of the quality values for
the sequences. Some fragments were mis-
placed at this point, either because of fol-
lowing the incorrect path or using undetec-
ted overcollapsed unitigs. This occurred
usually when a repeat was long, such as the
full-length, 7- to 9-kbp retrotransposons of
Drosophila, and its interior had to be con-
structed entirely from a pebble tiling. In
general, however, the quality of these inte-
rior repeat segments was still better than
99.5% accurate. The discussion below
comparing repeats in the Adh region further
illustrates the nature of the errors incurred
with long-repeat interiors. For WGS data,
30,998 pebbles of average length 640 bp
were placed, closing 1257 gaps of average
width 2219 bp and providing 3.21 Mbp of
new assembled sequence. At this point,
contigs average 50,002 bp in size.

Consensus. Reads were multiply aligned
according to the consensus metric and con-
sensus base calls were derived in the align-
ment columns. The quality of each consensus
base was computed as the log-odds of cor-
rectness by using the quality values available
for each read base.

The quality of the trimmed sequence in
Celera’s data is so high that a simple shift-
and-evaluate algorithm we call “abacus” suf-
fices to compute the optimal consensus-mea-
sure sequence. We then evaluated each col-

umn using a Bayesian estimate as described
in earlier work (25). In particular, the con-
sensus estimator will report positions that
appear polymorphic with an estimate of the
likelihood of the polymorphism being real, as
opposed to error-induced.

Our assembler only uses quality values to
drive the final pebble walks and to provide
consensus quality values. All other decisions
are made with percent sequence identity as
the discriminating measure. This is a signif-
icant departure from the prevailing paradigm
for assemblers (26 ).

Characteristics of the Drosophila
Assembly
The assembly of the joint data set resulted in
838 firm scaffolds, where we define a scaf-
fold as firm if it contains at least one U-
unitig. By definition all scaffolds that are not
firm are unitigs with an A-statistic less than
10, and almost without exception, these
unitigs are (i) unrelated to the firm scaffolds
by either link or overlap relations, (ii) local-
ized to repeat-induced gaps in the firm scaf-
folds, or (iii) pebbles that were relevant but
not used in late-stage repeat resolution. We
thus consider these firm scaffolds to be the
result of assembly. For the firm scaffolds, 50
could be mapped to the euchromatic genome
via markers of the BDGP STS map, and 134
could be mapped to the euchromatic genome
via the draft sequencing of the BDGP phys-
ical map. In Adams et al. (11), these 134
mapped scaffolds are considered the prelim-
inary reconstruction of the euchromatic se-
quence, wherein there are 1630 gaps to be
finished. The remaining 704 scaffolds are all
comparatively small U-unitigs with no ob-
servable connection to the draft or STS data,
and we conjecture that some substantial frac-
tion of these must be nonrepetitive islands
within the heterochromatin of the centro-
meres (11), or may represent as-yet-uniden-
tified foreign DNA.

There are a total of 119.71 Mbp of se-
quence in the 2483 contigs of the firm scaf-
folds that span 122.76 Mbp when one allows
for the estimated amount of sequence that is

Fig. 4. Anatomy of a scaffold. A scaffold is a collection of ordered contigs with approximately
known distances between them. Our contigs are built from U-unitigs that form a scaffold via
bundles and then have a series of rocks, stones, and pebbles filled into the gaps between them
(where possible).
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Hierarchical shotgun sequencing 

(The public human genome project)

Hierarchical strategy

• Construct a set of large (100 to 200kb) clones, and 
sequence each independently with the shotgun 
approach 

• Clones are mapped and selected to provide an 
ordered tiling of the genome 

• Devised to eliminate long-range misassembly 
and reduce the risk of short-range misassembly 

• Allows targeting specific regions of the genome 
for greater sequencing depth

Assembling short reads

Assembling short reads

• Problems with O-L-C approach 

• Complexity: orders of magnitude more reads to 
deal with, challenging both for overlap and 
layout (even with heuristics approaches) 

• Repeats: difficulty resolving repeats longer 
than read size much more problematic as reads 
get much shorter 

• So, we can either get a lot more efficient, or find a 
new approach



Inspiration: sequencing by 
hybridization

• What if we had a sequencing technology that 
could tell us all of the k-mers contained in a 
particular sequence?
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  Tagged probes become hybridized

to the DNA chip’s microarray.
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  Millions of DNA strands

  build up on each location.

http://www.affymetrix.com/corporate/media/image_library/image_library_1.affx

Microarray (Affymetrix)
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Hybridization on DNA Array
Universal array for all 4-mers Inspiration: sequencing by 

hybridization

• What if we had a sequencing technology that 
could tell us all of the k-mers contained in a 
particular sequence? 

• Such as a universal microarray 

• Can we re-construct a sequence from all of its k-
mers?

Solving the SBH problem

• We can solve it in nearly the same way as the SCS 
problem 

• Build a graph in which  

• each node is a k-mer 

• each (directed) edge between nodes s and t 
means the suffix of s is the prefix of t.



Solving the SBH problem

• We can solve it in nearly the same way as the SCS 
problem 

• Build a graph in which  

• each node is a k-mer 

• each (directed) edge between nodes s and t 
means the suffix of s is the prefix of t. 

• Find a path through the graph that visits every 
vertex exactly once 

• Hamiltonian path, NP-complete

SBH as an Eulerian path problem

• Instead of making the vertices k-mers, make them 
all the k-1 mers 

• Each k-mer then defines exactly one edge in the 
graph 

• This is called a “de Bruijn” graph

Finding an Eulerian path

• Start at an arbitrary vertex v 
and form an arbitrary cycle 
(without using any edges twice) 

• If the cycle is not Eulerian, it 
must contain some vertex w 
with unused edges, find a cycle 
from that vertex 

• Combine and repeat
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Algorithm for Constructing an Eulerian Cycle 

a. Start with an arbitrary 

vertex v and form an 

arbitrary cycle with unused 

edges until a dead end is 

reached.  Since the graph 

is Eulerian this dead end is 

necessarily the starting 

point, i.e., vertex v.
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Algorithm for Constructing an Eulerian Cycle (cont’d)

b.   If cycle from (a) above is 

not an Eulerian cycle, it 

must contain a vertex w, 

which has untraversed 

edges.  Perform step (a) 

again, using vertex w as 

the starting point. Once 

again, we will end up in 

the starting vertex w.
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Algorithm for Constructing an Eulerian Cycle  (cont’d)

c. Combine the cycles 

from (a) and (b) into 

a single cycle and 

iterate step (b).

Major problems with SBH

• Hard to detect exact k-mers (probes can hybridize 
with mismatches) 

• Longer k-mers help, but this increases the array 
size exponentially

NGS ⇔ SBH

• Even with high-density microarrays, hard to build 
a universal array for a reasonable size k 

• Ultra short read sequencing at high depth 
provides a more efficient way to find k-mers (for 
some k shorter than the read length) 

• Thus: assemble short reads by using them to 
accurately determine the spectrum of a sequence 
and an Eulerian path approach



Figure 2: From de Bruijn graphs to repeat graphs. The de Bruijn graph of a sequence contains a
vertex for every k-mer in the sequence, and an edge (u, v) for every pair of consecutive (overlapping)
k-mers in the sequence (a). The condensed de Bruijn graph replaces all paths containing non-
branching vertices by a single edge labeled by the sequence that generated the path (b). When
the condensed de Bruijn graph is constructed on a genome, it contains some small bulges and
whirls representing repeats with slightly varying repeat copies (c). In the repeat graph the bulges
and whirls are removed (e). The de Bruijn graph of reads contains additional spurious bulges and
whirls caused by sequencing errors in reads (d). The goal of the Eulerian assembly is to construct
the repeat graph of reads (f) that approximates the repeat graph of the genome. Different papers
use different terminology, e.g., the edges of these graphs are referred to as “blocks” in [32] and
“unipaths” in [2].
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Overlap Graph: Eulerian Approach

Repeat Repeat Repeat

Find a path visiting every EDGE 

exactly once:
Eulerian path problem

Placing each repeat edge 

together gives a clear 

progression of the path 

through the entire sequence.

Repeat graph
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Multiple Repeats
Repeat1 Repeat1Repeat2 Repeat2

Can be easily 
constructed with any 
number of repeats

Challenges

• Sequencing errors affect the graph substantially 

• Must correct somehow 

• Resolving repeats 

• de Bruijn graph is simplified and transformed 
into a repeat graph 

• Goal of assembly: either transform the repeat 
graph so an Eulerian path can be found or find 
a simplified repeat graph (giving contigs) 

• Can’t resolve tandem repeat counts
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k-mers in the sequence (a). The condensed de Bruijn graph replaces all paths containing non-
branching vertices by a single edge labeled by the sequence that generated the path (b). When
the condensed de Bruijn graph is constructed on a genome, it contains some small bulges and
whirls representing repeats with slightly varying repeat copies (c). In the repeat graph the bulges
and whirls are removed (e). The de Bruijn graph of reads contains additional spurious bulges and
whirls caused by sequencing errors in reads (d). The goal of the Eulerian assembly is to construct
the repeat graph of reads (f) that approximates the repeat graph of the genome. Different papers
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TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG
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(12x)
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(2x)
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(1x)
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(8x)

CGAC

(1x)

GAGG

(16x)

GACG

(1x)

AGGC

(16x)

ACGC

(1x)

3. Simplification of linear stretches

TAGTCGAG AGAGACAG

AGATCCGATGAG

GAGGCTTTAGA

2. Hashing

1. Sequencing 

(e.g. Solexa, 454…))

Linear stretches

4. Error removal

TAGTCGA

AGAGATAGA

AGAT

GCTTTAG

GCTCTAG

AGACAG

AGAA

CGAG

CGACGC

GAGG

GATCCGATGAG

GATT

AGGCT
Bubble

Tips

Graph: # nodes N50 (bp) Max. length 

(bp)

# nodes N50 Max. length 

(bp)

Initial 309,723 10 10 3,621,167 16 16

Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   
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Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856
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B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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3. Simplification of linear stretches

TAGTCGAG AGAGACAG

AGATCCGATGAG

GAGGCTTTAGA

2. Hashing

1. Sequencing 

(e.g. Solexa, 454…))

Linear stretches

4. Error removal

TAGTCGA

AGAGATAGA

AGAT

GCTTTAG

GCTCTAG

AGACAG

AGAA

CGAG

CGACGC

GAGG

GATCCGATGAG

GATT

AGGCT
Bubble

Tips

Graph: # nodes N50 (bp) Max. length 

(bp)

# nodes N50 Max. length 

(bp)

Initial 309,723 10 10 3,621,167 16 16

Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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A. Initial pipeline of the Velvet package.

D. Whole chromosome simulations of
sequencing projects on Yeast chr. IV, E.coli,

and C. elegans chr. V. The simulations involve
respectively error-free reads, reads with errors,

and reads with errors applied to a diploid
sample.

C. Coverage distribution of the final contigs
produced by the experiments described in B.

Analysis of contigs longer than 100 bp showed
no misassemblies and error rates of 0.02% and

0.004% respectively.

Maximum N50 length

(Zerbino and Birney 2008)

Connecting contigs

• Can extract unique contiguous regions from the 
graph, but length is limited by the read length 
and inherent repeat structure of the sequence 

• Two ways to improve this: 

• Use some paired-end reads 

• Use some long reads

Velevet: Pebble (paired ends)

• Primary scaffold 

• For a given unique node, use all mate-pairs to 
estimate distance from that node to other 
unique nodes 

• Iterate, to produce a set of estimated distances 
between all pairs of unique nodes 

• Secondary scaffold 

• Infer secondary neighbors from primary 
neighbors



Assisted assembly

Comparative assembly

• Align reads to existing assembled genome to guide 
assembly 

• Between species with sufficient similarity 

• Human reference used to assemble Neanderthal, 
Chimpanzee, Orangutan, ... 

• Elephant used to assemble Mammoth, 

• ... 

• Within species 

• Multiple human genomes assembled using 
reference

Problems with comparative assembly

• Difficult to recover complex variation 

• Small scale local rearrangement (segmental 
duplications) can be very hard to accurately 
sequence 

• Paired reads can help to uncover 
rearrangements 

• Harder to assemble any novel sequences not 
represented in the reference 

• Hybrid approach: de novo assembly followed by 
referenced assembly

Gene boosted assembly

• Build an initial set of contigs and run gene 
prediction on them 

• Where good predicted genes span contigs, use 
gene to orient contigs and fill in gaps by aligning 
reads to predicted amino acid sequence

Gene boosted assembly of P. aeruginosa

• Comparative assembly (using multiple 
references) for initials contigs 

• Gene prediction on contigs 

• For genes extending beyond or between contigs, 
align unassembled reads using tblastn 

• For remaining unplaced reads, de novo assemble 
with velvet

(Salzberg et al. 2008)



Gene boosted assembly of P. aeruginosa

(Salzberg et al. 2008)
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Massively parallel DNA sequencing technologies are revolutioniz-
ing genomics by making it possible to generate billions of
relatively short (∼100-base) sequence reads at very low cost.
Whereas such data can be readily used for a wide range of bio-
medical applications, it has proven difficult to use them to gener-
ate high-quality de novo genome assemblies of large, repeat-rich
vertebrate genomes. To date, the genome assemblies generated
from such data have fallen far short of those obtained with the
older (but much more expensive) capillary-based sequencing ap-
proach. Here, we report the development of an algorithm for ge-
nome assembly, ALLPATHS-LG, and its application to massively
parallel DNA sequence data from the human and mouse genomes,
generated on the Illumina platform. The resulting draft genome
assemblies have good accuracy, short-range contiguity, long-range
connectivity, and coverage of the genome. In particular, the base
accuracy is high (≥99.95%) and the scaffold sizes (N50 size = 11.5
Mb for human and 7.2 Mb for mouse) approach those obtained
with capillary-based sequencing. The combination of improved
sequencing technology and improved computational methods
should now make it possible to increase dramatically the de
novo sequencing of large genomes. The ALLPATHS-LG program
is available at http://www.broadinstitute.org/science/programs/
genome-biology/crd.

The high-quality assembly of a genome sequence is a critical
foundation for understanding the biology of an organism, the

genetic variation within a species, or the pathology of a tumor.
High-quality assembly is particularly challenging for large, repeat-
rich genomes such as those of mammals. Among mammals, “fin-
ished” genome sequences have been completed for the human
and the mouse (1, 2). However, for most large genomes, efforts
have focused on using shotgun-sequencing data to produce high-
quality draft genome assemblies—with long-range contiguity in
the range of 20–100 kb and long-range connectivity in the range of
10 Mb (e.g., refs. 3–5). Using traditional capillary-based se-
quencing, such assemblies have been produced for multiple
mammals at a cost of tens of million dollars each.
Recently, there has been a revolution in DNA sequencing

technology. New massively parallel technologies can produce
DNA sequence information at a per-base cost that is ∼100,000-
fold lower than a decade ago (6, 7). In principle, this should make
it possible to dramatically decrease the cost of generating high-
quality draft genome assemblies. In practice, however, this has
been difficult because the new technology produces sequencing
“reads” of only ∼100 bases in length (compared with >700 bases
for capillary-based technology). These shorter reads are also less
accurate. For both of these reasons, these data are more difficult
to assemble into long contiguous and connected sequence. Ex-
cellent de novo assemblies using massively parallel sequence data
have been reported for microbes with genomes up to 40 Mb (refs.
8–10 and many others). There have been some important pio-
neering efforts (11, 12) for large genomes, but they fall far short
of the high-quality draft sequences that can be obtained with
the earlier technology. Moreover, fundamental issues have been

raised about the quality of de novo assemblies that can be con-
structed from such data (13).
Here, we describe an algorithm and software package ALL-

PATHS-LG for de novo assembly of large (and small) genomes.
We demonstrate the power of the approach by applying it to
massively parallel sequence data generated from both the human
and the mouse genomes. The results approach the quality of as-
semblies obtainable with capillary-based sequencing in terms of
completeness, contiguity, connectivity, and accuracy. The un-
covered regions of the genome consist largely of repetitive se-
quences, with segmental duplications remaining a particularly
important challenge. The results indicate that it should be possi-
ble to generate high-quality draft assemblies of large genomes at
∼1,000-fold lower cost than a decade ago.

Results
Model for Input Data.De novo genome assembly depends both on
the computational methods used and on the nature and quantity
of sequence data used as input. For capillary-based sequencing,
genome scientists ultimately converged around a fairly standard
model, specifying the desired coverage from libraries of various
insert sizes. For massively parallel sequencing data, we specify
such a model in Table l.
We adopted this model for several reasons. First, it requires

constructing only a few libraries, reducing the laboratory burden
and the amount of DNA required. Second, the fragment library
has inserts that are short enough that the sequencing reads from
each end overlap by ∼20% and can be merged to create a single
longer “read”. (The current read length is ∼100 bases; as read
lengths increase, insert sizes should be∼1.8 times the read length.)
Third, we obtain long-range connectivity by using “jumping li-
braries” (in which the middle of the insert is removed, ref. 14)
because current technology cannot sequence fragments > ∼1 kb.
Our model sets a target of 100-fold sequence coverage (to

compensate for shorter reads and possibly nonuniform cover-
age), whereas the model for capillary sequencing required only
8- to 10-fold coverage. Despite using higher coverage, the pro-
posed model is dramatically cheaper because the per-base cost of
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massively parallel sequencing is ∼10,000-fold lower than the
current cost of capillary sequencing. [Coverage can be measured
in different ways. For Illumina sequencing, we define coverage in
terms of purity-filtered bases (ref. 6 and Table 2).]
We developed several laboratory techniques for making the

libraries (see SI Materials and Methods for details): (i) For frag-
ments, we adapted existing protocols with the goal of improving
the representation of high GC-content DNA; (ii) for short jumps
(∼3 kb), we used the Illumina protocol (6); (iii) for long jumps (∼6
kb), we used a protocol that we had previously developed, on the
basis of a protocol for the SOLiD sequencing platform that
involves circularization and EcoP15I digestion (7, 9); and (iv) for
Fosmid jumps (∼40 kb), we developed two methodologies,
“ShARC” and “Fosill” (described in SI Materials and Methods).

Sequencing Data. Using the model above, we generated sequence
data from human and mouse genomes (Table 2), using the Illu-
mina GAII andHiSeq sequencers (SIMaterials andMethods). For
the human, we sequenced the cell line GM12878 because it has
been extensively sequenced and analyzed as part of the 1000
Genomes Pilot Project (15). (The cell line GM12878 is from the
Coriell Institute. DNA from this cell line is denoted NA12878.)
For the mouse, we used C57BL/6J female DNA because it was

the strain used for the draft and finished sequences of the mouse
(2, 3). The data have been deposited in the NCBI Short Read Ar-
chive under study namesHuman_NA12878_Genome_on_Illumina
and Mouse_B6_Genome_on_Illumina.

ALLPATHS-LG Assembly Method. We next needed to develop algo-
rithms and a software package able to performdenovo assembly of
large mammalian genomes. For this purpose, we made extensive
improvements to our previous program ALLPATHS (9, 16),
which can routinely assemble small genomes. The improved pro-
gram is called ALLPATHS-LG and is freely available at http://
www.broadinstitute.org/science/programs/genome-biology/crd. We
outline some of the key innovations (for more details, see SI
Materials and Methods):

i) Handling repetitive sequences. Repetitive sequence is the
fundamental genomic feature that stymies assembly. We
adapted ALLPATHS-LG to be more resilient to repeats,
as follows. In its initial assembly representation (called a uni-
path graph), ALLPATHS collapses repeats of length ≥K,
where K is chosen to be short enough that overlaps of length
K between reads are abundant (16). In ALLPATHS-LG, we
are able to use a larger K (in this work 96) by performing an
initial step dubbed “read doubling,” in which the two end
sequences from a fragment are pasted together provided
that the overlap between them is confirmed by another read
pair or if that read pair fills in a gap (Fig. S1A). A given pair
can have more than one such completion, as could happen,
for example, if a single-nucleotide polymorphism (SNP)
were to fall between the two ends of a pair (Fig. S1B).

ii) Error correction (cf. ref. 17). We describe the ALLPATHS-
LG approach to error correction. For every 24-mer, the
algorithm examines the stack of all reads containing the
24-mer. Individual reads may be edited if they differ from

Table 1. Provisional sequencing model for de novo assembly

Libraries, insert types* Fragment size, bp Read length, bases Sequence coverage, × Required

Fragment 180† ≥100 45 Yes
Short jump 3,000 ≥100 preferable 45 Yes
Long jump 6,000 ≥100 preferable 5 No‡

Fosmid jump 40,000 ≥26 1 No‡

*Inserts are sequenced from both ends, to provide the specified coverage.
†More generally, the inserts for the fragment libraries should be equal to ∼1.8 times the sequencing read length.
In this way, the reads from the two ends overlap by ∼20% and can be merged to create a single longer read. The
current sequencing read length is ∼100 bases.
‡Long and Fosmid jumps are a recommended option to create greater continuity.

Table 2. Experimental data for human and mouse assemblies

Species Library type
No. of
libraries

DNA used,
μg

Mean size,
bp

Read
length

Sequence coverage, ×

Physical coverage, ×All PF Aligned Unique Valid

Human Fragment 1 3 155 101 51.9 41.8 38.4 37.9 36.5 27.8
Short jump 2 20 2,536 101 45.9 40.7 33.7 31.7 19.7 249.4
Fosmid jump 2 20 35,295 76* 5.3 4.0 3.0 0.4 0.3 49.5
Total 5 43 103.1 86.5 75.1 70.0 56.5 326.7

Mouse Fragment 1 3 168 101 58.6 53.1 49.6 46.6 45.3 37.6
Short jump 3 20 2,209 101 48.0 40.7 35.1 32.0 19.9 219.1
Long jump 5 50 7,532 26 13.5 9.3 9.2 5.5 2.9 408.3
Fosmid jump 1 30 38,453 76 1.4 1.1 1.1 0.1 0.1 23.1
Total 10 103 121.5 104.2 95.0 84.2 68.2 688.1

The data used as assembly input are shown. Tables S1 and S2 provide more detail. Library type: See Table 1. DNA used: Amount of DNA used as input to
library construction. For each genome and each library type, a single aliquot was used. DNA source for human: Coriell Biorepository, NA12878. DNA source for
mouse: Jackson Laboratory C57/BL6J (stock 000664). Size: Mean of observed fragment size distribution. Read length: Number of bases sequenced. The
exception is the long jump libraries prepared with the EcoP15I digestion, which yield 26 bases of genomic information; these inserts were sequenced to
36 bases and then trimmed to 26 bases. Sequence coverage: All reads were used in the assembly, but we describe their properties here via a series of nested
categories. All: Total number of bases in reads, divided by genome size, assumed to be the reference size of 3.10 Gb for human and 2.73 Gb for mouse. PF:
Coverage by purity-filtered (PF) reads. Aligned: Coverage by aligned PF reads. Unique: Coverage by aligned PF reads, exclusive of duplicates, which were
identified by concurrence of start and stop points of pairs on the reference. Valid: Coverage by unique pairs for which the fragment length was within 5 SDs
of the mean. Physical coverage: Total coverage by valid pairs and the bases between them.
*Reads from one library had length 76, and those from the other had length 101.

1514 | www.pnas.org/cgi/doi/10.1073/pnas.1017351108 Gnerre et al.

Allpaths-LG: Model for sequencing Allpaths-LG key innovations

• Better recipes and protocols for library prep, more 
even representation of sequences 

• “read doubling” to span repetitive regions 

• Hierarchical approach to low coverage regions
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Fig. S1. The ALLPATHS-LG process of fragment pair filling. (A) The algorithm tries to close the black pair. It finds another pair (red) that perfectly overlaps the
black pair and closes its gap. Sequence from the red pair is inserted into the gap in the black pair, thus closing it. (B) Again the algorithm tries to close the black
pair, but this time there is a SNP (A or T) between its gap. Two red pairs both overlap the black pair perfectly, providing two separate solutions to its closure,
both of which are retained.
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Fig. S2. Artifacts associated with sheared jumping libraries, following the Illumina protocol (1). (A) DNA is sheared and size selected, yielding linear fragments.
(B) The ends of these fragments are biotinylated and then the fragments are circularized and sheared. Fragments of the circles are then enriched for those
containing biotin. The ideal fragment is shown in C. Two reads enter from opposite sides but do not read the junction. In D, one of the reads passes through
the junction point, creating a “chimeric” read. In E, the ends of a fragment that do not contain a junction point are read, yielding a read pair in opposite
orientation to that of C and whose true separation on the genome is small.

1. Bentley DR, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59.

Fig. S3. Gap patching. See SI Materials and Methods for ALLPATHS-LG Algorithms, Gap patching. (A) Steps i–iv define a pool of oriented reads that might land
in a given gap. (B) Steps v and vi define a stack of reads that align to a given read (top); the dotted line shows a column of the stack that “votes” to determine if
the corresponding base on the given read is to be changed. (C) Step vii: All 16-mers that could be party to a bridge across the gap are found; dotted portions of
reads are 16-mers that are excluded and then trimmed off the reads. (D) Steps viii–x: Closures of the gap are found by walking across the gap using perfect
overlaps between the reads.
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capillary-based assemblies, because we lack a finished reference
sequence for the individuals.
The ALLPATHS-LG assembly contained a local assembly

error in 3.5% of the 1-kb chunks (mean spacing between local
assembly errors of ∼29 kb). The capillary-based assembly has
essentially the same local accuracy at 4.1% (mean spacing of
∼24 kb), whereas the SOAP assembly has lower accuracy at 6.2%
(mean spacing of ∼16 kb). [When compared with a common
reference sequence (Genome Reference Consortium, GRC), the
respective local assembly error rates for the ALLPATHS-LG
and capillary-based assemblies are 4.0 and 4.1%, respectively.]
To assess long-range accuracy, we randomly selected short

sequences separated by 100 kb and determined whether their
distance and orientation were essentially the same in the refer-
ence. The ALLPATHS-LG assembly had long-range accuracy of
99.1%. This accuracy is slightly lower than the 99.7% for the
capillary-sequencing-based assembly, although this comparison is
not completely fair because the Sanger assembly was edited using

the NCBI reference sequence to correct misjoins. The long-
range accuracy of the SOAP assembly was very good (99.5%).

Mouse Genome. The results were broadly similar for the mouse
genome. The ALLPATHS-LG assembly has an N50 contig
length of 16 kb and scaffold length of 7.2 Mb. The contig size is
similar but the connectivity is >20-fold larger than that obtained
from the SOAP algorithm (16-kb contigs, 0.3-Mb scaffolds). Our
results again approach the published results from capillary-based
sequencing (25-kb contigs, 16.9-Mb scaffolds).
The ALLPATHS-LG assembly contains 88.7% of the genome

and 96.7% of exonic bases, and its scaffolds span all but 2.8% of
the genome. These percentages are not as good as those obtained
for capillary-based sequencing (94.2%, 97.3%, and 2.0%), with
the difference again largely attributable to repeats. The coverage,
however, is considerably better than that obtained with SOAP.
The ALLPATHS-LG assembly again shows good short-range

and long-range accuracy. Base accuracy is 99.97% (Q36), slightly
better than that of both the SOAP and the capillary-based as-

Table 3. Human and mouse assemblies

Assemblies:
Human Mouse

Assembly no.: 1 2 3 4 5 6
Sequence data: Illumina Illumina ABI3730 Illumina Illumina ABI3730
Program: ALLPATHS-LG SOAP Celera ALLPATHS-LG SOAP ARACHNE

Completeness
Covered, % 91.1 74.3 96.2 88.7 86.2 94.2
Captured, % 6.6 18.6 1.3 8.6 8.0 3.8
Uncaptured, % 2.3 7.0 2.5 2.7 5.7 2.0
Segmental duplication coverage, % 41.1 12.1 62.2 42.3 27.9 65.7
Exon bases covered, % 95.1 81.2 96.2 96.7 92.4 97.3

Continuity
Contig N50, kb 24 5.5 109 16 16 25
Scaffold N50, kb 11,543 399 17,646 7,156 340 16,871

Contig accuracy
Ambiguous bases, % 0.08 0 0 0.04 0 0
1-kb chunks vs. reference NA12878 GRC GRC GRC B6 B6 B6
(I) perfect 77.1 88.6 76.8 78.0
(II) ≤0.1% error rate 8.7 2.5 2.9 7.0
(III) ≤1% 10.2 5.7 6.1 11.7
(IV) ≤10% 3.1 3.6 5.5 3.6 2.8 11.8 2.4
(V) >10% 0.4 0.4 0.7 0.5 0.2 2.4 0.3
Base quality, from I–III Q33 Q36 Q35 Q33
Misassembly % of 1-kb chunks, from IV–V 3.5 4.0 6.2 4.1 3.0 14.2 2.7

Scaffold accuracy
Validity at 100 kb, % 99.1 99.5 99.7 99.0 98.8 99.1

An evaluation of human and mouse assemblies is shown. Contigs of size <1 kb were excluded from the analysis. Reference sequences
are described in SI Materials and Methods. Assembly no.: Assemblies 1, 4, and 5 are from the data of this paper and are deposited in
DDBJ/EMBL/GenBank under accession nos. AEKP00000000, AEKQ00000000, and AEKR00000000, respectively. The versions described in
this paper are the first versions, AEKP01000000, AEKQ01000000, and AEKR01000000. For each ambiguity {x1, . . . , xn}, we inserted x1
into the fasta sequence and referred to x2, . . . , xn in a note at the locus. Assemblies 2, 3, and 6 are from refs. 3, 12, and 19).
Completeness: Contigs were aligned to the reference sequence, with each contig assigned to at most one location. The covered fraction
of a genome consists of the fraction of total bases in the reference (exclusive of gaps) that lie under a contig. The captured fraction
consists of those bases that lie within a gap in a scaffold. All other bases are uncaptured. Exon coverage was computed from
RefSeq gene annotations (http://genome.ucsc.edu/cgi-bin/hgTables). Segmental duplication coverage was computed from http://
humanparalogy.gs.washington.edu/build36/oo.weild10kb.join.all.cull.xwparse and http://mouseparalogy.gs.washington.edu/She2008_
download/WGAC.tab.gz. Continuity: We report the N50 sizes of contigs and scaffolds, excluding gaps in the latter case. Contig
accuracy: We first report the fraction of bases labeled as ambiguous (SI Materials and Methods). We then divide the contigs into 1-
kb chunks (as in ref. 9, which, however, used a chunk size of 10 kb). Each chunk is then aligned to the reference sequence using the
Smith–Waterman algorithm, seeded on perfect 100-mer matches, to find the optimal placement, and the number of errors (mismatch
plus indel bases) is computed. (Contigs having no 100-mer match were treated as novel sequence and ignored for purposes of this
analysis. There was <1% of novel sequence in all cases.) The contig is then assigned to one of five mutually exclusive classes on the basis
of its error rate. The percentages of chunks landing in each class are listed. Note that for assembly 1, contig accuracy was calculated
with respect to two reference sequences. Base quality: Inferred Phred quality (20) of bases in chunk classes I–III. Misassembly %: Total
fraction of bases in chunk classes IV–V. Scaffold accuracy: Validity at 100 kb (9): We report the probability that two 100-base sequences
in the assembly, separated by 100 kb, and also present in the reference, have the same orientation and are separated by 100 kb ± 10%.
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Two simulated genomes using evolver, 
simulated reads from first genome 

used for assembly

Table 1:

ID Affiliations Entries Software Used β

ASTR Agency for Science, Technology
and Research, Singapore

1 PE-Assembler No

WTSI-P Wellcome Trust Sanger Institute,
UK

2 Phusion2, phrap No

EBI European Bioinformatics Insti-
tute, UK

2 SGA, BWA, Curtain, Velvet No

WTSI-S Wellcome Trust Sanger Insitute,
UK

4 SGA No

CRACS Center for Research in Advanced
Computing Systems, Portugal

3 ABySS Yes

BCCGSC BC Cancer Genome Sciences Cen-
tre, Canada

5 ABySS, Anchor No

DOEJGI DOE Joint Genome Insititute,
USA

1 Meraculous No

IRISA L’IRISA (Institut de recherche
en informatique et systèmes
aléatoires), France

5 Monument No

CSHL CSHL (Cold Spring Harbor Labo-
ratory), USA

2 Quake, Celera, Bambus2 No∗

DCISU Department of Computer Science,
Iowa State University

1 PCAP No

IoBUGA Computational Systems Biology
Laboratory, University of Geor-
gia, USA

3 Seqclean, SOAPdenovo No

UCSF UC San Francicso, USA 1 PRICE Yes
RHUL Royal Holloway, University of

London, UK
5 OligoZip No

GACWT The Genome Analysis Centre,
Sainsbury Laboratory, and Well-
come Trust Centre for Human Ge-
netics, UK

3 Cortex con rp No

CIUoC Department of Computer Science,
University of Chicago, USA

1 Kiki No

BGI BGI, Shenzhen China 1 SOAPdenovo No
Broad Broad Institute 1 ALLPATHS-LG No

nVelv — 6 Velvet No
nCLC — 9 CLC No

nABySS — 6 ABySS No

1
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Table 1 (following page): A table.

ID Overall CPNG50 SPNG50 Struct. CC50 Subs. Copy Num. Cov. Tot. Cov. Genic

Broad 31 2 (7.25e+04) 3 (2.11e+05) 3 (1244) 1 (2.66e+06) 4 (2.92e-06) 11 (6.71e-02) 6 (98.3) 1 (93.8)
BGI 37 1 (8.23e+04) 6 (1.17e+05) 6 (1878) 7 (5.66e+05) 11 (1.20e-05) 2 (6.75e-03) 1 (98.8) 3 (92.7)

WTSI-S 38 9 (2.48e+04) 1 (4.95e+05) 2 (475) 3 (1.14e+06) 1 (1.30e-07) 9 (5.74e-02) 8 (97.8) 5 (91.8)
DOEJGI 44 14 (1.15e+04) 2 (4.86e+05) 1 (456) 2 (1.89e+06) 3 (4.43e-07) 7 (5.42e-02) 11 (97.3) 4 (92.3)

CSHL 57 3 (4.23e+04) 8 (7.17e+04) 14 (5146) 6 (6.11e+05) 9 (1.02e-05) 6 (4.95e-02) 4 (98.5) 7 (89.1)
CRACS 58 11 (1.55e+04) 5 (1.44e+05) 4 (1666) 4 (8.61e+05) 2 (3.81e-07) 12 (6.82e-02) 14 (96.3) 6 (90.2)

BCCGSC 60 5 (3.63e+04) 4 (1.46e+05) 10 (2867) 8 (3.22e+05) 8 (7.00e-06) 15 (1.17e-01) 2 (98.7) 8 (88.9)
EBI 64 16 (9.39e+03) 7 (1.13e+05) 7 (2055) 9 (3.04e+05) 6 (5.17e-06) 1 (3.56e-03) 9 (97.7) 9 (88.5)

IoBUGA 65 7 (3.06e+04) 12 (3.54e+04) 15 (6310) 5 (6.47e+05) 15 (3.80e-05) 3 (8.38e-03) 6 (98.3) 2 (92.8)
RHUL 71 6 (3.20e+04) 13 (3.31e+04) 8 (2551) 15 (1.59e+04) 5 (3.52e-06) 5 (4.77e-02) 4 (98.5) 15 (67.4)

WTSI-P 74 4 (3.80e+04) 11 (4.21e+04) 13 (4895) 13 (3.41e+04) 14 (1.48e-05) 4 (4.38e-02) 2 (98.7) 13 (75.0)
DCSISU 99 12 (1.35e+04) 10 (5.61e+04) 12 (4319) 12 (9.75e+04) 13 (1.37e-05) 13 (6.91e-02) 15 (94.3) 12 (79.0)
nABySS 100 10 (1.99e+04) 16 (2.00e+04) 5 (1731) 16 (6.97e+03) 7 (5.96e-06) 19 (3.17e-01) 10 (97.5) 17 (57.2)

IRISA 103 17 (8.20e+03) 9 (5.82e+04) 11 (3725) 9 (3.04e+05) 17 (3.99e-05) 14 (7.61e-02) 16 (93.7) 10 (88.1)
ASTR 106 8 (2.52e+04) 14 (3.13e+04) 9 (2818) 14 (1.81e+04) 12 (1.28e-05) 18 (2.88e-01) 17 (90.9) 14 (68.5)
nVelv 114 18 (5.65e+03) 15 (2.75e+04) 18 (8626) 11 (1.27e+05) 18 (6.21e-05) 10 (6.22e-02) 13 (96.5) 11 (84.8)
nCLC 115 15 (9.47e+03) 18 (9.54e+03) 16 (7283) 18 (4.36e+03) 10 (1.11e-05) 8 (5.61e-02) 12 (97.2) 18 (55.4)
UCSF 138 12 (1.35e+04) 17 (1.35e+04) 20 (24987) 17 (6.84e+03) 20 (1.21e-04) 17 (2.30e-01) 19 (83.7) 16 (59.6)

GACWT 149 20 (2.53e+03) 19 (7.82e+03) 17 (8622) 19 (2.60e+03) 16 (3.86e-05) 20 (3.46e-01) 18 (86.4) 20 (48.0)
CIUoC 152 19 (5.60e+03) 20 (5.60e+03) 19 (11282) 20 (1.27e+03) 19 (1.11e-04) 16 (1.98e-01) 20 (78.5) 19 (48.9)

1
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Next: Hybrid assembly

• Long (454, PacBio) reads can span gaps but are 
error prone and expensive 

• Use for scaffolding contigs assembled from 
short reads where more errors can be tolerated 

• Correct errors first using short-reads

Error correction is crucial

Histogram of cov

Coverage

De
ns
ity

0 20 40 60 80 100

0.
00
0

0.
00
5

0.
01
0

0.
01
5

!

!

!
!!!!!!!!!!!

!!
!!

!
!
!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

True k-
mers 

Error k-
mers 

������������

������������

������������

������������

������������

������������
������������

������������

������������

������������
����	�
���

�������������

����������������
�����	������

	���	�
�����
���
�	��

���	����

1. Count all “Q-mers” in reads 
•  Fit coverage distribution to mixture model 

of errors and regular coverage 
•  Automatically determines threshold for 

trusted k-mers 

2. Correction Algorithm 
•  Considers editing erroneous kmers into 

trusted kmers in decreasing likelihood 
•  Includes quality values, nucleotide/nucleotide 

substitution rate 

Error Correction with Quake 

Quake: quality-aware detection and correction of sequencing reads. 
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. 11:R116  


