Sequencing and assembly A little graph theory

The Seven Bridges of Konigsberg The Seven Bridges of Konigsberg

e Find a tour through Kdnigsberg that crosses
every bridge exactly once

e Euler: route inside land doesn’t matter, just the
sequence of crossings

e Abstraction: Graph
e Land masses are vertices (nodes)

e Bridges are Edges

Graphs

e Many (overlapping) classes including:

- ? N e Directed (each edge has a direction) or
BN undirected
- > . . .
o Weighted (each edge has a numeric weight) or
unweighted
e Connected (a path exists between any pair of
vertices)
G={VE}
V={1,23,4,56,7,8910,11,12} . .
E={(1,2),(1,9),(2,9), (2,3),(2,7), (3/4), (3,6), (3,7), (4,5), (5,6), (7,8), (7,12) (8,11), (9,10), (9,11), (11,12)} e Canreduce some prObIemS to ﬁndlng a partlcular

path or cycle in a particular graph



Some path problems

¢ Ina (possibly weighted) graph, find:
e Shortest path between two vertices
e Longest path between two vertices

e (global sequence alignment)

Hamiltonian path

A path that visits every vertex exactly once

Hamiltonian cycle: returns to the starting vertex

Both decision problems are NP-complete*

*a solution can be verified in polynomial time,
but there is no know fast algorithm to find a solution

Traveling salesman problem

Given a list of cities with known pairwise
distances between them, find the shortest tour
that visits every city exactly once

Equivalent to finding the shortest Hamiltonian
cycle in a complete weighted graph

e thus decision problem is NP-hard
(and in fact, NP-complete)

Eulerian Path

e Konigsberg bridge problem: find a path that visits
each edge exactly once

¢ Not possible for the real Kénigsberg, Euler
showed that for such a path to exist the graph
must have exactly zero or two nodes of odd
degree

e Such a path is now called an Eulerian Path, and an
algorithm exists to find it it O(|E|) time

Hamiltonian cycle

Sequencing DNA



Sequencing

e Goal: determine sequence of nucleotides in a
DNA molecule

e Limitations of current methods:

e Require many copies of the fragment to be
sequenced

e Can only sequence a limited number of bases
for a given DNA molecule

e Consensus sequence of these identical short
fragments: sequencing “reads”

Assembly as a string problem

¢ All reads came from the same string, thus we seek
some superstring of the reads (a string which
contains every read as a substring)

e There are (infinitely) many possible
superstrings

e Which one do we want?

Shortest superstring problem

e Input: a set of strings sy, ... Sn.

e Output: a string s that contains all of 55, ... sn as
substrings, and which has the smallest possible
length of all such superstrings

Sequencing longer molecules

e Shotgun sequencing

e Break DNA into random fragments (in a way
that yields overlapping fragments)

e Sequence from one or both ends of the short
fragments

e Assembly

e Resolve original sequence from fragments

Assembly as a string problem

o All reads came from the same string, thus we seek
some superstring of the reads (a string which
contains every read as a substring)

e There are (infinitely) many possible
superstrings

e Which one do we want? Makes sense to seek
the shortest superstring of the data

Graph representation solution

e Vertices: the n strings

e Edges: the edge between two nodes is
- overlap(s;, sj)

e overlap(s; sj) is the length of the longest prefix
of sjwhich is a suffix of s;.

e Thus, pairs with large overlap have small
weights

¢ Find the shortest path that visits every vertex
exactly once



Complexity Shortest Common Superstring

e Shortest Hamiltonian tour in a weighted graph is e Problems
the Traveling Salesman Problem, which is NP- . .
¢ No efficient solution

complete

. e Doesn't allow for errors in sequencing reads
e And... we can show that any solution to the SCS 9 9

problem requires solving the Hamiltonian path e Repeats: shortest reconstruction may not be
problem, and thus is NP-complete correct reconstruction
Fragment assembly strategy Overlap

¢ Find best match between a suffix of a read and a

¢ Overlap-layout-consensus prefix of another

e Overlap: find potentially overlapping reads e But not an exact match, sequencing errors

e Layout: order the reads occur at 1% to 5% of positions depending on
technology
e Consensus: merge reads into a single sequence,
correcting errors (hopefully) e How can we find high scoring non-exact
matches?
Overlap: alignment Overlap: alignment

e Dealing with quality

* Optimal overlap alignment e Letlocal alignment handle it, or incorporate

e However reads often have lower quality at ends quality into alignment (PHRAP)
e Filtration approach e Trim low quality regions
¢ Find pairs of reads that share a common k-mer * Some k-mers occur extremely frequently
(repeats)

e Extend using local or global alignment
e Discard k-mers that occur more frequently
e Ignore if similarity is below some threshold than some amount (derived from the

expected sequence coverage)



Layout

e Overlap graph: nodes are reads, edges are
similarity scores

e Layout: find a path through the graph that
explains every read, while maximizing quality of
overlap (alignment score)

o Still the Hamiltonian path problem

Layout example

AO——
Rt
® -
Layout example
Sorted edges
1 (A,D)
; —0® (D,B)
/ \2 (AB)
®— ® (B,0)
(CD)

Add (A,D)

Path: A—D

Layout: A greedy algorithm

e |teratively add heaviest edges to path, as long as
they are consistent

e In particular (simple):
e Sortedges by weight

e For each sorted edge, add it only if it would not
result in the path branching

Layout example

Sorted edges

(AD)
AO——( (DB)
SN (AB)
®—= @ (8,0
(C.D)

Layout example

Sorted edges

(AD)

AO——0 (DB)
/ \: (AB)
®— ® (B,0)
(C,D)

Add (D,B)

Path: A—=D —B



Layout example

Sorted edges

(A,D)

, — @ (D,B)
/ \: (A,B)
®—. @ (B,C)
(C,D)

Reject (A,B)

Path: A—=D —B

Consensus

e Pairwise alignments between reads will specify a
set of letters believe to represent the same
position

e Simple: use the letter that occurs the most

e Complex: derive a multiple alignment, weight
by quality

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Practical problems: repeats

o If repetitive regions are longer than the read
length, cannot be resolved

e Merge reads up to potential repeat boundaries
(need to detect repeat boundaries in layout and
break paths)

Layout example

Sorted edges

(A.D)

AO——0 (DB)
/ \: (A,B)
®—. @ (8,0)
(C,D)

Accept (B,Q)

Path: A—=D —»B—C

Practical problems: continuity

¢ If notall of the sequence is represented in reads,
may not be able to resolve the whole sequence
(the graph may not be connected)

e Theresultis a set of contigs

e Other methods would be needed the order and
orientation of the contigs

Overcollapsed Contig



Even larger fragments History of WGA

1997

Let's sequence
the human
genome with the
shotgun strategy

e This strategy was developed and used
successfully for sequencing small regions (~50kb)

e How do we scale up to a whole genome?

impossible, and a
bad idea anyway Phil Green

Gene Myers

(I stole this slide verbatim from Serafim Batzoglou)

Whole genome shotgun

Whole genome shotgun
sequencing

Randomly fragment genomic DNA

Select for fragments of a certain size

Insert fragment into a plasmid, grow up bacteria

(Celera’s assembly of the .
to create many copies of each fragment

human genome)

Sequence from each end of the fragment

Multiple copies of genome ShOtg u n assem bly

1 Sheared random fragments

o — O — e Merge reads into contigs as described previously
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Read1
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>, Read2

Contig 3

Main problem: resolving repeats

Overcollapsed Contig

Shotgun assembly

¢ Merge reads into contigs as described previously
e Order contigs into scaffolds

e Mate-pair information provides order and
approximate distance

e Multiple insert sizes can make this much more
effective

— I- e - - - ~ - - - -- -
Contigs
SR S e a oy
Scaffolds(Super contigs)

Resolving long repeats

repeat boundary



Hierarchical shotgun sequencing

U-unitig

pundi — o (The public human genome project)
H iera rChicaI Strategy Hierarchical shotgun sequencing

Genomic DNA

e Construct a set of large (100 to 200kb) clones, and
sequence each independently with the shotgun

BAC libr
approach .
. Organized
e Clones are mapped and selected to provide an mapped large
. clone contigs
ordered tiling of the genome
e Devised to eliminate long-range misassembly seauenced
and reduce the risk of short-range misassembly
Shotgun
¢ Allows targeting specific regions of the genome siones
for greater sequencing depth Shotgun ... ACCGTAAATG

sequence

Assembly ...ACCGTAA

Assembling short reads

e Problems with O-L-C approach

e Complexity: orders of magnitude more reads to
deal with, challenging both for overlap and

Assembling short reads layout (even with heuristics approaches)

e Repeats: difficulty resolving repeats longer
than read size much more problematic as reads
get much shorter

® S0, we can either get a lot more efficient, or find a
new approach



Inspiration: sequencing by Microarray (Affymetrix)
hybridization

e What if we had a sequencing technology that = 4
could tell us all of the k-mers contained in a ’
particular sequence?

Millions of DNA strands Tagged probes become hybridized
build up on each location. to the DNA chip’s microarray.
Universal array for all 4-mers Inspiration: sequencing by
hybridization
Universal DNA Array

" AA AT AG AC TA TT TG TC GA GT GG GC CA CT CG_CC

ol = e What if we had a sequencing technology that

ac E= could tell us all of the k-mers contained in a

TA Tacc)

particular sequence?

IT

TG

1c ¢ Such as a universal microarray

GA

= e (Can we re-construct a sequence from all of its k-
GGl cecal

i s mers?

cafeans

T

<G
cc

Solving the SBH problem
S={ ATG TGG TGC GIG GGC GCA GCG CGT |

e We can solve it in nearly the same way as the SCS
problem

e Build a graph in which

e each nodeis a k-mer

e each (directed) edge between nodes s and t
means the suffix of s is the prefix of t. ATGCGTGGCA ATGGCGTGCA



Solving the SBH problem SBH as an Eulerian path problem

e We can solve it in nearly the same way as the SCS
problem

* Build a graph in which e Instead of making the vertices k-mers, make them

e each node is a k-mer all the k-1 mers

e each (directed) edge between nodes s and t e Each k-mer then defines exactly one edge in the

means the suffix of s is the prefix of t. graph

e Find a path through the graph that visits every e Thisis called a“de Bruijn"graph

vertex exactly once

e Hamiltonian path, NP-complete

Finding an Eulerian path
S={ATG, TGG, TGC, GTG, GGC, GCA, GCG,CGT}
Vertices correspond to (I-1)-tuples.
Edges correspond to I-tuples from the spectrum P I

e Startatan arbitrary vertex v ( S
and form an arbitrary cycle ro—
(without using any edges twice) Ve
e Ifthe cycle is not Eulerian, it ";‘:..._ B
must contain some vertex w Q‘i
with unused edges, find a cycle P,
from that vertex . _'
O -\..,\
e Combine and repeat N
e
........ T - N
ATGGCGTGCA ATGCGTGGCA { Y
Major problems with SBH NGS & SBH
e Even with high-density microarrays, hard to build
a universal array for a reasonable size k
e Hard to detect exact k-mers (probes can hybridize e Ultra short read sequencing at high depth
with mismatches) provides a more efficient way to find k-mers (for

e Longer k-mers help, but this increases the array some k shorter than the read length)

size exponentially e Thus: assemble short reads by using them to
accurately determine the spectrum of a sequence
and an Eulerian path approach



de Bruijn graphs for SR assembly Repeat graph

AAG ACTCC GACTG G GAC'I'I'I' Repeat Repeat Repeat

— Placing each repeat edge

- together gives a clear

(a) de Bruijn graph of a sequence - /X progression of the path
ACTCCGAC through the entire sequence.

BAG>PAGAC s e v a2 AT+ Find a path visiting every EDGE
exactly once:

Eulerian path problem

ACTGGGAC
(b) condensed de Bruijn graph

Repeat graph Challenges

Repeatl Repeat2 Repeatl Repeat2 e Sequencing errors affect the graph substantially
|| [ |

e Must correct somehow

e Resolving repeats

e de Bruijn graph is simplified and transformed

Can be easily into a repeat graph
constructed with any
number of repeats

o Goal of assembly: either transform the repeat
graph so an Eulerian path can be found or find
a simplified repeat graph (giving contigs)

e Can't resolve tandem repeat counts

K-mer Uniqueness Ratio d e Bru ij n g ra p h

1.0

AAGACTCCGACTGGGACTTT

0.9

0.8
1

Uniqueness Ratio

(a) de Bruijn graph of a sequence
ACTCCGAC

fruit fly (130 Mbp)
T. vaginalis (176 Mbp)
grapevine (487 Mbp)

chicken (1.08 Gbp) AAGAC ACTTT
dog (2.41 Gbp) QAAG> X GAO—~CACT > arD

human (2.91 Gbp)

0.6
EOEEODN

0.5

ACTGGGAC
(b) condensed de Bruijn graph

T T T T T T
0 200 400 600 800 1000

K-mer Length (bp)
(Schatz, Delcher, and Salzberg 2010)



Velvet

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG .
1. Sequencing

(e.g. Solexa, 454...))

AGICGAG CTTTAGA CGATGAG CTTTAGA
GICGAGG TTAGATC ATGAGGC  GAGACAG
GAGGCTC  ATCCGAT AGGCTTT GAGACAG
AGICGAG  TAGATCC ATGAGGC TAGAGAA
TAGICGA CTTTAGA CCGATGA  TTAGAGA
CGAGGCT AGATCCG TGAGGCT AGAGACA
TAGICGA GCTTTAG TCCGATG GCTCTAG
ca CCGA GAGGCTT AGAGACA
TAGICGA  TTAGATC GATGAGG TTTAGAG
GICGAGG TCTAGAT  ATGAGGC TAGAGAC
CTTT ATCCGAT AGGCTTT GAGACAG

acTcaaG
o

2. Hashing Linear stretches
AGTCGAG TTTAGATC ATGAGGC TTAGAGA
GAGGCTT  GATCCGA GAGGCTT ~GAGACAG Garr
(1)
N
TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC) AGAT
(90 (B0 (50 (6% (0 (70 (%) (89 (80
. - Acna
Gere crer TeTA CTAG (1)
o A e o s e e st () () () e e e
ot acte Grcs ncca | coas cags  acse ceer (o () (70 U maca acac oaca acac caca acac
Gx) (%) (9 (100 \(§0 (§x) (185 (11%) oopp crrr ez Tme (16%) (%) (12%) (9) (8x) (5%)
cGac GAcG  Acee @0 (@) (8x) (120
W (x (1x)

3. Simplification of linear stretches

GATT N acar \
“’”/
TAGTCGA CGAG

- - - Bubble
GGG W
coAcee

4. Error removal AGATCCGATGAG

Tips

GATCCGATGH

TAGICGAG  GAGGCTTTAGA AGAGACAG

AGTCGAG ~ TTAGATT ATGAGGC  AGAGACA

GGCTTTA TCCGATG TTTAGAG 2. Hashing Linear stretches
CGAGGCT TAGATCC TGAGGCT — GAGACAG
AGTCGAG TTTAGATC ATGAGGC TTAGAGA
GAGGCTT ~GATCCGA GAGGCTT GAGACAG GaTT
(1x)
.
TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC|AGAT
(9%) (8x) (5x) (6%) (7x) (7x) (7x) (8xX) \(8x)
. . . . AGAA
GCTC CTCT TCTA CTAG (1x)

. . . . . . - . . o . . .
TAGT AGTC GTCG TCGA | CGAG GAGG AGGC GGCT . . .~ TAGA AGAG GAGA AGAC GACA ACAG
(3x)  (7x) (9%) (10x) \(8x) (16x) (16x) (11X) gepr crer TTTA TTAG (16X) (9%) (12%) (9%) (8X) (5%)
= e R
CGAC GACG ACGC (8x) (8x) (8x) (12x)
(1x) (1x)  (1x)

(2x) (1x) (2x) (2x)

3. Simplification of linear stretches

Tips

TAGTCGA CGAG

. - . - Bubble
j
CGACGC

4. Error removal AGATCCGATGAG
.

. . .
TAGTCGAG GAGGCTTTAGA AGAGACAG

Connecting contigs

e (Can extract unique contiguous regions from the
graph, but length is limited by the read length
and inherent repeat structure of the sequence

e Two ways to improve this:
e Use some paired-end reads

e Use some long reads

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

1. Sequencing
(e.g. Solexa, 454...))

AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCGAGG TTAGATC ATGAGGC GAGACAG
GAGGCTC ~ ATCCGAT AGGCTTT GAGACAG
AGTCGAG TAGATCC ATGAGGC TAGAGAA
TAGTCGA CTTTAGA CCGATGA TTAGAGA
CGAGGCT AGATCCG TGAGGCT AGAGACA
TAGTCGA GCTTTAG TCCGATG GCTCTAG
TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
GTCGAGG TCTAGAT  ATGAGGC TAGAGAC
AGGCTTT ATCCGAT AGGCTTT GAGACAG
AGTCGAG  TTAGATT ATGAGGC  AGAGACA

GGCTTTA TCCGATG TTTAGAG 2. Hashing Linear stretches
CGAGGCT TAGATCC TGAGGCT — GAGACAG
AGTCGAG TTTAGATC ATGAGGC TTAGAGA
GAGGCTT ~GATCCGA GAGGCTT ~GAGACAG GATT
(1x)
e "
TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC | AGAT
(9x) (8x) (5x) (6x) (7x) (7x) (7x) (8%) \(8x)
. . . - AGAR
GCTC CTCT TCTA CTAG (1x)

. . . . . . . . . . . . N
TAGT AGTC GTCG TCGA | CGAG GAGG AGGC GGCT . . . TAGA AGAG GAGA AGAC GACA ACAG
(3x) (7x) (9x) (10x) . (8x) (16x) (16x) (11X) gopp crrr TrTTa TTAG (16X) (9%) (12x) (9%) (8x) (5%)
. . " = e R
CGAC GACG ACGC (8x) (8x) (8x) (12x)
(1x) (1x) (1x)

(2x) (1x) (2x) (2x)

3. Simplification of linear stretches
. ‘f—\
GATT
o\ e Tips
GATCCGR! AGAR /
GCTCTAG .
TAGTCGA CGAG h o

Maximum N50 length

Ideal reads + errors + SNPs
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(Zerbino and Birney 2008)

H.sapiens

Coverage density

Velevet: Pebble (paired ends)

e Primary scaffold

e For a given unique node, use all mate-pairs to
estimate distance from that node to other
unique nodes

e |[terate, to produce a set of estimated distances
between all pairs of unique nodes

e Secondary scaffold

¢ Infer secondary neighbors from primary
neighbors



A ] e ]

Primary neighbour

Comparative assembly

o Align reads to existing assembled genome to guide
assembly

e Between species with sufficient similarity

e Human reference used to assemble Neanderthal,
Chimpanzee, Orangutan, ...

e Elephant used to assemble Mammoth,
o ..
e Within species

e Multiple human genomes assembled using
reference

Gene boosted assembly

e Build an initial set of contigs and run gene
prediction on them

e Where good predicted genes span contigs, use

gene to orient contigs and fill in gaps by aligning

reads to predicted amino acid sequence

Assisted assembly

Problems with comparative assembly

o Difficult to recover complex variation

¢ Small scale local rearrangement (segmental
duplications) can be very hard to accurately
sequence

¢ Paired reads can help to uncover
rearrangements

e Harder to assemble any novel sequences not
represented in the reference

e Hybrid approach: de novo assembly followed by
referenced assembly

Gene boosted assembly of P. aeruginosa

e Comparative assembly (using multiple
references) for initials contigs

e Gene prediction on contigs

e For genes extending beyond or between contigs,
align unassembled reads using tblastn

e For remaining unplaced reads, de novo assemble
with velvet

(Salzberg et al. 2008)



Gene boosted assembly of P. aeruginosa

Contig 1 Contig 2

Gap-spanning gene

Gap-spanning gene sequence

Translated amino acid sequence

Translated, mapped reads

(Salzberg et al. 2008)

Allpaths-LG: Model for sequencing

Table 1. Provisional sequencing model for de novo assembly

Libraries, insert types*  Fragment size, bp  Read length, bases  Sequence coverage, x  Required
Fragment 180" >100 45 Yes
Short jump 3,000 >100 preferable 45 Yes
Long jump 6,000 >100 preferable 5 No*
Fosmid jump 40,000 >26 1 No*

*Inserts are sequenced from both ends, to provide the specified coverage.

"More generally, the inserts for the fragment libraries should be equal to ~1.8 times the sequencing read length.
In this way, the reads from the two ends overlap by ~20% and can be merged to create a single longer read. The
current sequencing read length is ~100 bases.

*Long and Fosmid jumps are a recommended option to create greater continuity.

“Read doubling”

(a) . > €
(b) > €

High-quality draft assemblies of mammalian genomes
from massively parallel sequence data

Sante Gnerre?, lain MacCallum?®, Dariusz Przybylski®, Filipe J. Ribeiro®, Joshua N. Burton®, Bruce J. Walker?,
Ted Sharpe?, Giles Hall?, Terrance P. Shea®, Sean Sykes?®, Aaron M. Berlin®, Daniel Aird®, Maura Costello®, Riza Daza®,
Louise Williams®, Robert Nicol®, Andreas Gnirke?, Chad Nusbaum?®, Eric S. Lander>*", and David B. Jaffe™'

“Broad Institute of MIT and Harvard, Cambridge, MA 02142; "Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and
15

“Department of Systems Biology, Harvard Medical School, Boston, MA 021

Contributed by Eric S. Lander, November 23, 2010 (sent for review October 8, 2010)

Massively parallel DNA i jes are ioni
ing genomics by making it possible to generate billions of
relatively short (~100-base) sequence reads at very low cost.
Whereas such data can be readily used for a wide range of bio-
medical applications, it has proven difficult to use them to gener-
ate high-quality de novo genome assemblies of large, repeat-rich
vertebrate genomes. To date, the genome assemblies generated
from such data have fallen far short of those obtained with the
older (but much more capillary-based ing ap-

raised about the quality of de novo assemblies that can be con-
structed from such data (13).

Here, we describe an algorithm and software package ALL-
PATHS-LG for de novo assembly of large (and small) genomes.
‘We demonstrate the power of the approach by applying it to
massively parallel sequence data generated from both the human
and the mouse genomes. The results approach the quality of as-
semblies obtainable with capillary-based sequencing in terms of

proach. Here, we report the development of an algorithm for ge-
nome assembly, ALLPATHS-LG, and its application to massively
parallel DNA sequence data from the human and mouse genomes,
generated on the lllumina platform. The resulting draft genome
assemblies have good accuracy, short-range contiguity, long-range
connectivity, and coverage of the genome. In particular, the base
accuracy is high (>99.95%) and the scaffold sizes (N50 size = 11.5
Mb for human and 7.2 Mb for mouse) approach those obtained
with capillary-based sequencing. The combination of improved

i and improved i methods
should now make it possible to increase dramatically the de
novo sequencing of large genomes. The ALLPATHS-LG program
is available at http: insti i
genome-biology/crd.

and accuracy. The un-
covered regions of the genome consist largely of repetitive se-
quences, with segmental duplications remaining a particularly
important challenge. The results indicate that it should be possi-
ble to generate high-quality draft assemblies of large genomes at
~1,000-fold lower cost than a decade ago.

Results
Model for Input Data. De novo genome assembly depends both on
the computational methods used and on the nature and quantity
of sequence data used as input. For capillary-based sequencing,
genome scientists ultimately converged around a fairly standard
model, specifying the desired coverage from libraries of various
insert sizes. For massively parallel sequencing data, we specify
such a model in Table 1.

We adopted this model for several reasons. First, it requires

Allpaths-LG key innovations

e Better recipes and protocols for library prep, more
even representation of sequences

¢ ‘“read doubling”to span repetitive regions

Hierarchical approach to low coverage regions

“Gap patching”

I

T




Table 3. Human and mouse assemblies

Human Mouse
Assemblies:
Assembly no.: 1 2 3 4 5 6
Sequence data: Illumina lllumina  ABI3730 Illumina Illumina  ABI3730
Program: ALLPATHS-LG SOAP Celera  ALLPATHS-LG SOAP ARACHNE
Completeness
Covered, % 91.1 74.3 96.2 88.7 86.2 94.2
Captured, % 6.6 18.6 13 8.6 8.0 38
Uncaptured, % 23 7.0 25 27 5.7 2.0
Segmental duplication coverage, % a1 121 62.2 423 27.9 65.7
Exon bases covered, % 95.1 81.2 96.2 96.7 92.4 97.3
Continuity
Contig N50, kb 24 5.5 109 16 16 25
Scaffold N50, kb 11,543 399 17,646 7,156 340 16,871
Contig accuracy
Ambiguous bases, % 0.08 0 0 0.04 0 0
1-kb chunks vs. reference NA12878 GRC GRC GRC B6 B6 B6
() perfect 771 88.6 76.8 78.0
(Il) <0.1% error rate 8.7 25 29 7.0
n <1% 102 5.7 6.1 1.7
(V) <10% 31 36 55 36 2.8 1.8 24
(V) >10% 04 04 0.7 0.5 0.2 2.4 0.3
Base quality, from I-Ill Q33 Q36 Q35 Q33
Misassembly % of 1-kb chunks, from V-V 35 40 6.2 41 3.0 14.2 27
Scaffold accuracy
Validity at 100 kb, % 99.1 99.5 99.7 99.0 98.8 99.1

™ |SSEMBLATHON

Assemblathon 1: A competitive assessment of de novo short read
assembly methods

Dent A. Earl, Keith Bradnam, John St. John, et al.

Genome Res. published online September 16, 2011
Access the most recent version at doi:10.1101/gr.126599.111
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ASTR Agency for Science, Technology T PE-Assembler No
and Research, Singapore
WTSI-P | Wellcome Trust Sanger Institute, 2 Phusion2, phrap No
UK
EBI European Bioinformatics Insti- 2 SGA, BWA, Curtain, Velvet No
tute, UK
WTSI-S | Wellcome Trust Sanger Insitute, 4 SGA No
UK
CRACS | Center for Research in Advanced 3 ABySS Yes
Computing Systems, Portugal
BCCGSC | BC Cancer Genome Sciences Cen- 5 ABySS, Anchor No
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DOEJGI | DOE Joint Genome Insititute, 1 Meraculous No
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IRISA L'IRISA (Institut de recherche 5 Monument No
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DCISU Department of Computer Science, 1 PCAP No
Towa State University
10BUGA | Computational Systems Biology 3 Seqclean, SOAPdenovo No
Laboratory, University of Geor-
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Two simulated genomes using evolver,
simulated reads from first genome

used for assembly
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Next: Hybrid assembly

e Long (454, PacBio) reads can span gaps but are

error prone and expensive

e Use for scaffolding contigs assembled from
short reads where more errors can be tolerated

e Correct errors first using short-reads
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Contiguity Statistics
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Distance between points

Error correction is crucial

. Count all “Q-mers” in reads

Fit coverage distribution to mixture model
of errors and regular coverage

Automatically determines threshold for
trusted k-mers

1

Error k-

o 20 a0 0 80 100
Coverage

2. Correction Algorithm

Considers editing erroneous kmers into
trusted kmers in decreasing likelihood
Includes quality values, nucleotide/nucleotide
substitution rate

ovservedread: (ACGTCCTAGTTA

qualty: r Likelihood

Quake: quality-aware detection and correction of sequencing reads.
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. | I:R116



