Prokaryotic and Eukaryotic Genome Annotation: gene structure and function

Aaron J. Mackey, Ph.D.
amackey@virginia.edu

Outline

- bacterial gene annotation
- a primer in Hidden Markov Models
- eukaryotic gene annotation

Overview of Bacterial Annotation

how to identify bacterial coding genes:

- annotation aims to identify true start (ATG) sites
- "long" open reading frames (ORFs)
- lots of "short" ORFs missed
- homology to known proteins (BLAST/FASTA)
- Ribosomal binding sites (RBS)
- canonical Shine-Dalgarno vs. species-specific 16S ribosome
- SD sequence not required for ribosomal S1 binding at upstream AU sites; requires options
- protein coding potential (codon usage, amino-acid frequency)
- $3^{\text {rd }}$-order or $6^{\text {th }}$-order Hidden Markov Models (HMMs)

$a b$ initio bacterial gene finding

- Glimmer, GeneMark, GeneMark.hmm, GeneMarkS, ORPHEUS, CRITICA
- all $a b$ initio methods use some form of statistical models to represent expected microbial gene structures.

GeneMark.hmm's microbial gene grammar

more about Hidden Markov Models (HMMs) soon!

GeneMark.hmm's grammar for overlapping/operon genes

bacterial gene finders are mostly accurate

A
B. subtilis

B E.coli

Glimmer generally more sensitive (false positives?)

bacterial gene finders are mostly accurate

Table 4. Comparison of the GeneMarkS, Glimmer 2.02 and ORPHEUS gene prediction programs on the following test sets: the B.subtilis genome as annotated in GenBank (A); three sets of B.subtilis genes shorter than 300 nt with at least one (B), at least two (C) and at least 10 (D) significant homologies determined by BLAST analysis; and a set of 195 experimentally validated E.coli genes (E)

Program	Test set	Genes in test set	Genes precisely predicted ${ }^{\text {a }}$	Genes detected ${ }^{\text {b }}$ (${ }^{\prime}$ end)
Glimmer	A	4099	2556 (62.4\%)	4023 (98.1\%)
ORPHEUS	A		3028 (73.9\%)	3484 (85.0\%)
GeneMarkS	A		3412 (83.2\%)	3962 (96.7\%)
Glimmer	B	123	70 (57.0\%)	112 (91.1\%)
GeneMarkS	B		102 (82.9\%)	113 (91.9\%)
Glimmer	C	72	41 (57.0\%)	66 (91.7\%)
GeneMarkS	C		64 (88.9\%)	68 (94.4\%)
Glimmer	D	51	26 (51.0\%)	45 (88.2\%)
GeneMarkS	D		46 (90.2\%)	48 (94,1\%)
Glimmer	E	195	139 (71.3\%)	195 (100\%)
ORPHEUS	E		148 (75.9\%)	181 (92.8\%)
GeneMarkS	E		184 (94.4\%)	195 (100\%)

Numbers in bold indicate the highest number of genes detected or genes precisely predicted for each test set.
aRefers to the case where both the 5^{\prime} end and the 3^{\prime} end predictions match the annotation.
${ }^{\text {'Refers }}$ to the case where the 3 ' end prediction (and not necessarily 5 ' end prediction) matches the annotation.

Table 3. Comparison of annotation of E.coli K-12 accession U00096.2

Feature	Reference	Prokka	RAST	xBase2
Total CDS	4321	$\mathbf{4 3 0 5}$	4512	4444
Matching start	-	$\mathbf{3 8 2 8}$	3571	3025
Different start	-	$\mathbf{3 1 8}$	533	1052
Missing CDS	-	$\mathbf{1 7 2}$	214	241
Extra CDS	-	$\mathbf{1 5 9}$	405	367
Hypothetical protein	18	276	638	$\mathbf{1 5 6}$
With EC number	114	1050	$\mathbf{1 1 1 8}$	0
Total tRNA	89	$\mathbf{8 8}$	86	$\mathbf{8 8}$
Total rRNA	22	$\mathbf{2 2}$	$\mathbf{2 2}$	$\mathbf{2 2}$

The bold denotes the best performing tool (column) for that attribute (row). The italics are "subsets" of the "Total CDS" section.

orthology-dependent annotation

Functional Similarity of Orthologs and Paralogs in S. cervisiae and S. Pombe
A. All Ontologies

C. Biological Process

Inparalogs
Within-spec. outparalogs θ Between-spec. outparalogs
B. Cellular Component

D. Molecular Function

Sequence divergence (\% Identity)

1:1 orthologs \square
Other orthologs \triangle

take home: bacterial gene annotation

- 5' ATG start sites harder to get right than 3' stop sites
- homology-based methods are complementary to ab initio tools
- functional prediction driven by homology and existing annotations: "guilt by association"
- integrated annotation pipelines (AGeS, RAST, PIPA, MaGe, Prokka, JCVI/IGS annotation service) are the modern standard
- incomplete/metagenomic assemblies still rife with sequencing+assembly errors ... impact on ORFs
- OK, but what is this HMM stuff all about?
"What makes HMMs so popular is that the name is so tantalizing. Something is hidden, and we're finding it, and we have a Russian name to do it."
- David Lipman

Science: 273:590, 1996

Hidden Markov Models (HMMs)

- a statistical model that relates observations to underlying, explanatory variables
- a linear model relates y to $x_{1}, x_{2}, \ldots, x_{n}$ with:

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{n} x_{n}+\varepsilon
$$

- the observations D are sequential (Markov), exhibit $K^{\text {th }}-o r d e r ~\left(e . g .1^{\text {st }}-o r d e r\right)$ correlations
- usually shown as edges between nodes in a graph
- all $\boldsymbol{x}_{\boldsymbol{i}}$'s (for some subset of \boldsymbol{i} in \boldsymbol{n}) are structurally unobserved, latent, i.e. hidden
- not the same as "missing data"
- only categorical variables, i.e. "labels"

HMMs for sequential inference

- four aspects/parts to all HMMs:
- observed sequential data (D)
- hidden/unobserved labels (L)
- state-graph topology/structure (G)
- enumerated states (nodes)
- allowed transmissions (edges) between states
- labeled state emissions (observations)
- model parameters $\left(\theta_{\mathrm{G}}\right)$
- transmission \& emission probabilities

HMMs for sequential inference

- four aspects/parts to all HMMs:
- observed sequential data (D)
- hidden/unobserved labels (L)
- state-graph topology/structure (G)
- model parameters $\left(\theta_{G}\right)$
- four issues answered with HMMs:
- given G,D,L, θ_{G}; how likely is D (scoring)?
- given G, D, θ_{G}; what is the best L ? (labeling)
- given $G, D, L ;$ what is the best θ_{G} ? (training)
- given G,D; what is the best θ_{G} ? (training)

HMM example: the sick child

- a child feels either "cold", "dizzy" or "normal" at any given time (observed)
- the parent is trying to figure out whether the child is "healthy" or "feverish" (hidden labels)
- being "cold", "dizzy", or "normal" does not directly indicate health/fever, but is correlated
- health/fever episodes are sequentially correlated

completely specified sick child HMM:

(hidden) labels (L): H H H $\boldsymbol{F} \boldsymbol{F} H$ H H H F $\boldsymbol{F} \boldsymbol{F}$ H H H H data (D): C N N C D N N D C N C D N C N N

possible state emissions
four aspects/parts to all HMMs:

- observed sequential data (D)
- hidden/unobserved labels (L)
- state-graph topology/ structure (G)
- model parameters $\left(\boldsymbol{\theta}_{\mathrm{G}}\right)$
- emission alphabet (Dizzy, Cold, Normal)
- state-specific emission probabilities (red and blue numbers)
- state-to-state transition probabilities (black numbers)

HMMs for sequential inference

- given G, D, L, θ_{G}; how likely is D ? (scoring)
- calculate $\mathrm{P}(\mathrm{D} \mid \mathrm{L})$ using Markov chain rule
- given G, D, θ_{G}; what is the best L? (labeling)
- employ Viterbi along state/observation "trellis"
- given G,D,L; what is the best θ_{G} ?
(training with labels/truth: supervised)
- maximum likelihood (ML): find θ_{G} that optimizes $P(D \mid L)$
- given G,D; what is the best θ_{G} ?
(training without labels/truth: unsupervised)
- Baum-Welch (EM): iterate between expected labeling (forward/backward) and training (ML) until convergence

Basic conditional probability rule:

$$
P(A, B)=P(A \mid B) P(B)
$$

The Markov chain rule:

$$
\begin{aligned}
& P\left(q_{1}, q_{2}, \ldots, q_{T}\right) \\
& \quad=P\left(q_{T} \mid q_{1}, q_{2}, \ldots, q_{T-1}\right) P\left(q_{1}, q_{2}, \ldots, q_{T-1}\right) \\
& \quad=P\left(q_{T} \mid q_{T-1}\right) P\left(q_{1}, q_{2}, \ldots, q_{T-1}\right) \\
& \quad=P\left(q_{T} \mid q_{T-1}\right) P\left(q_{T-1} \mid q_{T-2}\right) P\left(q_{1}, q_{2}, \ldots, q_{T-2}\right) \\
& \quad=P\left(q_{T} \mid q_{T-1}\right) P\left(q_{T-1} \mid q_{T-2}\right) \cdots P\left(q_{2} \mid q_{1}\right) P\left(q_{1}\right)
\end{aligned}
$$

HMM scoring: Markov chain rule

HMM scoring: Markov chain rule

HMM scoring: Markov chain rule

High Scoring != High Probability

truth: H H H F F H H H H F F F H H H H data: C N N C D N N D C N C D N C N N

$1.7 \mathrm{e}-11$ is not very probable; how
"remarkable" is this particular set of observations, compared to a more "expected" series of observations?

truth: H H H F F H H H H F F F H H H H data: $N \mathrm{~N} N \mathrm{D}$ D N N N N D D D N N N N

(this is the "perfect" series of observations with maximal correlation to the underlying truth)

High Scoring != High Probability

```
truth: H H H F F H H H H F F F H H H H data: C N N C D N N D C N C D N C N N
```

$1.7 \mathrm{e}-11$ is not very probable; how
"remarkable" is this particular set of observations, compared to a more "expected" series of observations?

```
truth: H H H FF FH H H H F F F H H H H
    data: N N N D D N N N N D D D N N N N
```

Answer: 4.1e-09 - more than 200x more likely that the observed data, but not itself high probability -> large combinatoric space of possible sequences

overall probability of a sequence

- instead of $P\left(D \mid L, G, \theta_{G}\right)$, we could ask $P\left(D \mid G, \theta_{G}\right)$ - i.e. independent of any "true" labeling, what's the chance of this exact sequence to arise from this HMM?
- the "forward" algorithm calculates this probability:
- original sequence: $P\left(D \mid G, \theta_{G}\right)=1.9 e-08$
- "expected" sequence: $2.5 \mathrm{e}-08$

HMMs for sequential inference

- given G, D, L, θ_{G}; how likely is D ? (scoring)
- calculate P(D|L) using Markov chain rule
- given G, D, θ_{G}; what is the best L? (labeling)
- employ Viterbi along state/observation "trellis"
- given G,D,L; what is the best θ_{G} ?
(training with labels/truth: supervised)
- maximum likelihood (ML): find θ_{G} that optimizes $P(D \mid L)$
- given G,D; what is the best θ_{G} ?
(training without labels/truth: unsupervised)
- Baum-Welch (EM): iterate between expected labeling (forward/backward) and training (ML) until convergence

State/Observation "trellis"

$$
\begin{array}{llllllll}
\mathbf{o}_{1} & \mathbf{O}_{2} & \mathbf{O}_{\mathrm{t}-1} & \mathbf{o}_{\mathrm{t}} & \mathbf{o}_{\mathrm{t}+1} & \mathbf{O}_{\mathrm{t}+2} & \mathbf{o}_{\mathrm{T}-1} & \mathbf{o}_{\mathrm{T}}
\end{array}
$$

OBSERVATION

HMM labeling: Viterbi

$$
\begin{array}{rllllllllllllllll}
& & & & & & & & & 1 & 1 & 1 & 1 & 1 & 1 \\
\text { idx: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { truth: } & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{~F} & \mathrm{~F} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\
\text { data: } & \mathrm{C} & \mathrm{~N} & \mathrm{~N} & \mathrm{C} & \mathrm{D} & \mathrm{~N} & \mathrm{~N} & \mathrm{D} & \mathrm{C} & \mathrm{~N} & \mathrm{C} & \mathrm{D} & \mathrm{~N} & \mathrm{C} & \mathrm{~N} & \mathrm{~N}
\end{array}
$$

$$
\begin{aligned}
& P_{1, j}=P\left(L_{1} \mid S_{1, j}\right) P\left(S_{1, j}\right) \\
& P_{i, j}=\max _{k \in K}\left\{P\left(L_{i} \mid S_{i, j}\right) P\left(S_{i, j} \mid S_{i-1, k}\right) P_{i-1, k}\right\}
\end{aligned}
$$

Data:	C	N	N	C	D	N	N	D	C	N	C	D	N	\ldots
Healthy	$\mathrm{P}(\mathrm{C} \mid \mathrm{H}) * \mathrm{P}(\mathrm{H})$													
Fever	$\mathrm{P}(\mathrm{C} \mid \mathrm{F}) * \mathrm{P}(\mathrm{F})$													
Label:	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

HMM labeling: Viterbi

HMM labeling: Viterbi

$$
\begin{array}{rllllllllllllllll}
& & & & & & & & & 1 & 1 & 1 & 1 & 1 & 1 \\
\text { idx: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { truth: } & H & H & H & F & F & H & H & H & H & F & F & F & H & H & H & H \\
\text { data: } & C & N & N & C & D & N & N & D & C & N & C & D & N & C & N & N
\end{array}
$$

$$
\begin{aligned}
& P_{1, j}=P\left(L_{1} \mid S_{1, j}\right) P\left(S_{1, j}\right) \\
& P_{i, j}=\max _{k \in K}\left\{P\left(L_{i} \mid S_{i, j}\right) P\left(S_{i, j} \mid S_{i-1, k}\right) P_{i-1, k}\right\}
\end{aligned}
$$

Data:	C	N	N	C	D	N	N	D	C	N	C	D	N	\ldots
Healthy	0.24													
Fever	0.12													
Label:	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

HMM labeling: Viterbi

HMM labeling: Viterbi

$$
\text { idx: } 1 \begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$ truth: H H H F F H H H H F F F H H H H data: C N N C D N N D C N C D N C N N

$$
\begin{aligned}
& P_{1, j}=P\left(L_{1} \mid S_{1, j}\right) P\left(S_{1, j}\right) \\
& P_{i, j}=\max _{k \in K}\left\{P\left(L_{i} \mid S_{i, j}\right) P\left(S_{i, j} \mid S_{i-1, k}\right) P_{i-1, k}\right\}
\end{aligned}
$$

Data:	C	N	N	C	D	N	N	D	C	N	C	D	N	\ldots
Healthy	0.24	$0.5 * 0.7 * 0.24=0.084$ $0.5 * 0.4 * 0.12=0.024$												
Fever	0.12	$0.1 * 0.3 * 0.24=0.0072$ $0.1 * 0.6 * 0.12=0.0072$												
Label:	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

HMM labeling: Viterbi

idx: 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | truth: H H H F F H H H H F F F H H H H data: C N N C D N N D C N C D N C N N

$$
\begin{aligned}
& P_{1, j}=P\left(L_{1} \mid S_{1, j}\right) P\left(S_{1, j}\right) \\
& P_{i, j}=\max _{k \in K}\left\{P\left(L_{i} \mid S_{i, j}\right) P\left(S_{i, j} \mid S_{i-1, k}\right) P_{i-1, k}\right\}
\end{aligned}
$$

Data:	C	N	N	C	D	N	N	D	C	N	C	D	N	\ldots
Healthy	0.24	$\begin{gathered} 0.084 \\ \text { (H) } \end{gathered}$	$\begin{aligned} & P(N \mid H) * P(H \mid H) * 0.088 \\ & P(N \mid H) * P(H \mid F) * 0.0072 \end{aligned}$											
Fever	0.12	$\begin{array}{\|c\|c\|} \hline .0072 \\ (\mathrm{FFH}) \end{array}$	$\begin{aligned} & P(N \mid F) * P(F \mid H) * 0.084 \\ & P(N \mid F) * P(F \mid F) * 0.0072 \end{aligned}$											
Label:	H	H	H	H	F	H	H	F	H	H	?	?	?	?

HMM labeling: Viterbi

$$
\begin{aligned}
& P_{1, j}=P\left(L_{1} \mid S_{1, j}\right) P\left(S_{1, j}\right) \\
& P_{i, j}=\max _{k \in K}\left\{P\left(L_{i} \mid S_{i, j}\right) P\left(S_{i, j} \mid S_{i-1, k}\right) P_{i-1, k}\right\}
\end{aligned}
$$

Data:	C	N	N	C	D	N	N	D	C	N	C	D	N	\ldots
Healthy	0.24	$\begin{gathered} 0.084 \\ \text { (H) } \end{gathered}$	0.029	$\underset{(\mathrm{H})}{0.0082}$	$\left\|\begin{array}{c} 5.8 \mathrm{e}-04 \\ \text { (H) } \end{array}\right\|$	$\begin{gathered} 3 \mathrm{e}-04 \\ (\mathrm{~F}) \end{gathered}$	$1 \mathrm{e}-04$	$\left\|\begin{array}{c} 7.3 \mathrm{e}-06 \\ \text { (H) } \end{array}\right\|$	$\begin{gathered} 3 \mathrm{e}-06 \\ (\mathrm{~F}) \end{gathered}$	$\underset{\text { (H) }}{1 \mathrm{e}-06}$	$\left\lvert\, \begin{gathered} 2.9 \mathrm{e}-07 \\ (\mathrm{H}) \end{gathered}\right.$	$\begin{gathered} 2 \mathrm{e}-08 \\ (\mathrm{H}) \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline 1 \mathrm{E}-08 \\ (\mathrm{~F} \end{array}$	
Fever	0.12	$\begin{gathered} 0.0072 \\ (\mathbf{F} \mid \mathrm{H}) \end{gathered}$	$\underset{(\mathrm{H})}{0.0025}$	$\underbrace{0.0026}_{(\mathrm{H})}$	$\underset{(\mathrm{H})}{0.0015}$	$\underset{(\mathrm{F})}{8.9 \mathrm{e}-05}$	$8.9 e-06$ (H)	$\begin{aligned} & 1.9 \mathrm{e}-05 \\ & (\mathrm{H}) \end{aligned}$	$\begin{gathered} 3.4 \mathrm{e}-06 \\ (\mathrm{~F}) \end{gathered}$	$\begin{gathered} 2 \mathrm{e}-07 \\ \text { (H) } \end{gathered}$	$\left\lvert\, \begin{gathered} 9.4 \mathrm{e}-08 \\ \text { (H) } \end{gathered}\right.$	$\begin{gathered} 5.3 \mathrm{e}-08 \\ \text { (H) } \end{gathered}$	$\begin{gathered} 3.2 e-09 \\ (F) \end{gathered}$	
Label:	H	H	H	H	F	H	H	F	H	H	H	F	H	...

The occasionally dishonest casino

A casino uses a fair die most of the time, but

 occasionally switches to a loaded one:- Fair die: $\operatorname{Prob}(1)=\operatorname{Prob}(2)=\ldots=\operatorname{Prob}(6)=1 / 6$
- Loaded: $\operatorname{Prob}(1)=\operatorname{Prob}(2)=\ldots=\operatorname{Prob}(5)=1 / 10$, but $\operatorname{Prob}(6)=1 / 2$

Fair and unfair die

0	HHH
10 -	
ナ	
\cdots	
N -	
-	

Fair and unfair die

HMMs for sequential inference

- given G,D,L, θ_{G}; how likely is D ? (scoring)
- calculate $\mathrm{P}(\mathrm{D} \mid \mathrm{L})$ using Markov chain rule
- given G,D, θ_{G}; what is the best L? (labeling)
- employ Viterbi along state/observation "trellis"
- given $G, D, L ;$ what is the best θ_{G} ? (training with labels/truth: supervised)
- maximum likelihood (ML): find θ_{G} that optimizes $P(D \mid L)$
- given G,D; what is the best θ_{G} ?
(training without labels/truth: unsupervised)
- Baum-Welch (EM): iterate between expected labeling (forward/backward) and training (ML) until convergence

HMMs in computational genomics

- protein domain/sequence alignment
- multiple sequence alignment
- CNV inference
- SNP/haplotype inference
- CpG-methylation inference
- many, many, many others

eukaryotic gene structure

Intron Sequence Patterns

a simple HMM for eukaryotic genes

the GenScan/SNAP HMM topology

Comparative $a b$ initio methods

DNA sequence x

DNA sequence y

state path

DoubleScan

TwinScan/N-Scan

FIG. 4. Exact gene accuracy in human.

"combiners"

"combiners" - just another HMM

combiners improve accuracy a bit

Source	Ind.	Source	Ind.
Augustus-any	1	ExonHunter	10
Jigsaw	2	GeneZilla	11
Pairagon-any	3	Dogfish	12
Ensembl	4	GeneMark	13
Aceview	5	Twinscan	14
Craig	6	Geneid	15
Exogean	7	Saga	16
FgenesH++	8	Genscan	17
Mars	9		

Ensembl and UCSC pipelines

Alternative Splicing

A

FIG. 2. (A) A cutoff from a locus showing $k=3$ transcripts ($r n a_{1}, r n a_{2}$ and $r n a_{3}$) and 8 sites $\left\langle s_{1}, \ldots, s_{8}\right\rangle$. The exonintron structure is shown schematically, i.e., exons (boxes) and introns (lines) are not drawn to scale. Different variants can be observed, for instance ($s_{1}, s_{5},\left\{r n a_{1}, r n a_{2}\right\}$). (B) The corresponding splicing graph structure after contracting uninformative vertices. Dotted lines indicate the paths supported by single transcripts $r n a_{1}, r n a_{2}$ and $r n a_{3}$. (C) Ovals highlight all 3 bubbles, that is ($s_{1}, s_{6},\left\{r n a_{2}\right\},\left\{r n a_{3}\right\}$), ($s_{5}, s_{8},\left\{r n a_{1}\right\},\left\{r n a_{2}\right\}$) and ($\left.s_{1}, s_{8},\left\{r n a_{1}\right\},\left\{r n a_{2}\right\},\left\{r n a_{3}\right\}\right)$. In contrast, there exists no bubble between s_{5} and s_{6} because they are connected by only a single variant (i.e., $r n a_{2}$).

ExAlt - yep, another HMM

manual (re)annotation tools

- prokaryotic: Manatee/Ergatis, MaGe/ MicroScape, ...
- eukaryotic: Apollo, Artemis, ZMAP/ Otterlace, ACEdb, ...

ncRNA gene finding: Infernal

ncRNA gene finding: Infernal

recap: eukaryotic gene prediction

- still a hard problem to distinguish genes from genome
- challenges to consider: alternative splicing, pseudogenes, incomplete UTRs, cis/transsplicing, ...
- ncRNA limited by length, unknown families
- euk annotation pipelines (Ensembl, UCSC, MAKER, etc.) integrate many algorithms
- will RNAseq eliminate our need for such tools? ... tune in Friday

