Alignment statistics II / Algorithms II
Biol4230 Tues, February 13, 2018
Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057
Goals of today's lecture:

- what is the probability of an alignment score?
- given two sequences
- after a database search
- after many database searches
- Hidden Markov Models
- transition state models
- profile HMMs

Inferring Homology from Statistical Significance

- Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

How often do things happen by chance? statistics of coin tosses - expectation

- $p(H)=p(T)=0.5$
- $p(H H H T H)=p(H T T T H)=p(H H H H H)=(1 / 2)^{5}$
- how many times do we expect a run of 10 heads (by chance) in: Expectation
- 10 flips $1(1 / 2)^{10}=0.001$
- 100 flips
- 1000 flips $91(1 / 2)^{10} \sim 0.1$
- 1,000,000 flips $991(1 / 2)^{10} \sim 1$ 999,991 (1/2) ${ }^{10} \sim 1000$

poisson probability
0.001
0.1
0.6
0.999

- Probability ($0<=p<=1$) vs

Expectation ($0<=E()<=$ number of trials)

$$
E(x)=p(x)^{*} N
$$

Given an expectation, what is its probability?

 The Poisson Distribution: probabilities of counts of random events (radioactive decay, high similarity scores)$$
p(\mu, i)=\mu^{i} e^{-\mu} / i!\quad \begin{aligned}
& \mu=\text { mean expectation of event } \\
& i=\text { number of events }
\end{aligned}
$$

Distribution of solitaire wins

- I play iphone solitaire compulsively when waiting
- I win about 25% of games
- If I have played 2,000 games, how many have I won? how often have I won 2 in a row, 3 in a row, etc.

in a row	$\rho(2000)$	
1	0.2	400
2	0.025	50
3	0.002	4
4	$1 \mathrm{e}-4$	0.3
5	$6 \mathrm{e}-6$	0.01

Poisson distribution for ranges of events

 (one or more)$$
\begin{aligned}
& p(x \geq 1)=\sum_{i=1}^{\infty} \mu^{i} e^{-\mu} / i!=\mu^{1} e^{-\mu} / 1!+\mu^{2} e^{-\mu} / 2!+\ldots \\
& p(x
\end{aligned} \begin{aligned}
& 1)=1-p(0)=1-\mu^{0} e^{-\mu} / 0! \\
& =1-e^{-\mu}
\end{aligned}
$$

μ	$p(x>0)$	
0.001	0.001	
0.01	0.010	$1-\exp ^{-\mu} \sim \mu$
0.1	0.095	\longleftarrow
1.0	0.632	for $\mu<0.1$
2.0	0.865	

Statistics of "Head" runs

$$
E(I)=n p^{\prime}
$$

Results from tossing a coins 14 times; black circles indicate heads. The probability of 5 heads in a row is $p(5)=(1 / 2)^{5}=1 / 32$, but since there were 10 places that one could have obtained 5 heads in a row, the expected number of times that 5 heads occurs by chance is $E(5 \mathrm{H})$ $=10 \times 1 / 32=0.31$.

Alignment scores as coin tosses

- E (\# of H of length m) $\sim n^{m}$
- if the longest run is unique, $1=n p^{R n}$

$$
\begin{aligned}
1 / n & =p^{R n} \\
-\log _{e}(n) & =R_{n} \log _{e}(p) \\
-\log _{e}(n) / \log _{e}(p) & =R_{n} \\
R_{n} & =\log _{(1 / p)}(n)
\end{aligned}
$$

Converting logarithms:
$10^{x}=B^{y}$
$x \log _{10} 10=y \log _{10} B \quad$ The expected length of the
$\mathrm{x}=\mathrm{y} \log _{10} \mathrm{~B} \quad$ longest run R_{n} increases as
$x / \log _{10} B=y$ $\log (n)$ of the run length

Statistics of "Head" alignments

$$
E(\Lambda)=m n p^{\prime}
$$

The expected length of the longest run R_{n} increases as $\log (m n)$.

Comparison of two protein sequences, with identities indicated as black circles. Assuming the residues were drawn from a population of 20, each with the same probability, the probability of an identical match is $p=$ 0.05. In this example,there are $m=10 \times n=8$ boxes, so $E()=m n p=$ $80 \times 0.05=4$ matches are expected by chance. The probability of two successive matches is $p^{2}=(1 / 20)^{2}$ so a run of two matches is expected about $n \mathrm{~m} \mathrm{p}^{2}=8 \times 10 \times(1 / 20)^{2}=0.2$ times by chance.

From "Head" runs to scores

The longest "Head" run is equivalent to the "longest hydrophobic stretch" using a scoring matrix that assigns positive values S_{i} for some residues i and $-\infty$ for all other residues. Then:

$$
p(S)=\sum p\left(s_{i}\right) \text { for residues } i \text { with } s_{i}>0
$$

The same analogy can be made for alignment scores between i, j where $s_{i, j}$ the score for aligning residues i, j is either + with $p\left(s_{i, j}\right)$ or $-\infty$. Now the score for the longest positive alignment score is:

$$
\begin{aligned}
& E(S \geq x) \propto m n p^{x} \\
& E(S \geq x) \propto m n e^{x \ln p} \\
& E(S \geq x) \propto m n e^{-\lambda x} \text { where } \lambda=-\ln p
\end{aligned}
$$

Karlin-Altschul statistics for alignments without gaps

Given:
$E\left(s_{i, j}\right)=\sum_{i, j} p_{i} p_{j} s_{i, j}<0$ (local alignments)
Then:
$E(S \geq x)=K m n e^{-\lambda x}$
$K<1$ (space correction)
λ solution of : $\sum_{i, j} p_{i} p_{j} e^{\lambda_{s, j}}$
$E(S \geq x)$ is the Expectation (average \# of times) of seeing score S in an alignment. so, we apply the Poisson conversion:
$p(x)=1-\exp (-x) \Rightarrow$
$p(S>x)=1-\exp \left(-K m n e^{-\lambda S}\right)$

The Similarity Statistics Mantra...

- Find the Probability of a rare event (e.g. a high score) in a cluster of residues $\quad p^{n} \propto e^{-\lambda S}$
- Find the Expectation of this event by correcting for all the places it could have happened $K m n \bullet e^{-\lambda s}$
- Convert that into a Probability using the Poisson formula: $1-\exp \left(-\right.$ Kmne $\left.^{-\lambda S}\right)$
- Convert that Probability into an Expectation for the number of sequences in the database

$$
E(S>x)=P \bullet D=\left(1-\exp \left(-K m n e^{-\lambda S}\right)\right) \bullet D
$$

Extreme value distribution

$$
\begin{gathered}
S^{\prime}=\lambda S_{\text {raw }}-\ln K m n \\
S_{\text {bit }}=\left(\lambda S_{\text {raw }}-\ln K\right) / \ln (2) \\
P\left(S^{\prime}>x\right)=1-\exp \left(-e^{-x}\right) \\
P\left(S_{\text {bit }}>x\right)=1-\exp \left(-m n 2^{-x}\right) \\
E\left(S^{\prime}>x \text { ID }\right)=P D
\end{gathered}
$$

How many bits do I need?

$$
P\left(S_{b}>x_{b}\right)=m n 2^{-x_{b}}=\frac{m n}{2^{x_{b}}}, S_{b} \text { is a score in "bits" }
$$

Query size m	Lib. seq. size: n	DB Entries D	mnD/0.01	Bit threshold
200	200	100,000	$4 \times 10^{9} / 0.001$	42
450	450	100,000	$2 \times 10^{10} / 0.001$	44
450	450	$10,000,000$	$2 \times 10^{13 / 0.001}$	51

How many "bits" do I need?

$E(p \mid D)=p(40$ bits $) x$ database size $E(40 \mid 4,000)=10^{-8} \times 4,000=4 \times 10^{-5}$
(significant) $E(40 \mid 40,000)=10^{-8} \times 4 \times 10^{4}=4 \times 10^{-4}$ (significant) $E(40 \mid 400,000)=10^{-8} \times 4 \times 10^{5}=4 \times 10^{-3} \quad$ (not significant)
To get $E() \sim 10^{-3}$:
genome $(10,000) p \sim 10^{-3} / 10^{4}=10^{-7} / 160,000=40$ bits SwissProt $(500,000) p \sim 10^{-3 / 10^{6}}=10^{-9} / 160,000=47$ bits Uniprot/NR (10 $) ~ p \sim 10^{-3} / 10^{7}=10^{-10 / 160,000}=50$ bits

very significant 10^{-50}
significant 10^{-6}
significant 10^{-3} not significant

Statistics, validation, HMMs

- what is the probability of an alignment score?
- given two sequences
- after a database search
- after many database searches
- Hidden Markov Models
- transition state models
- profile HMMs
- HMMER3

Should you trust the E() -value??

- The inference of homology from statistically significant similarity depends on the observation that unrelated sequences look like random sequences
- Is this ALWAYS true?
- How can we recognize when it is not true?
- If unrelated==random, then the E() -value of the highest scoring unrelated sequence should be E()~ 1.0
- Statistical estimates can also be confirmed by searches against shuffled sequences

Smith-Waterman (ssearch36)

- highest scoring unrelated from domains

	P4	MAIZE Glutathione S-transferase 4; GS	223)	74	34.2	1.1	0.236	0.500	212	align	
sp	Q13155.2	AIMP2_HUMAN Aminoacyl tRNA synthase complex	320)	73	33.7	2.3	0.349	0.674	43	align	
sp	\|P46421.1	\|GSTU5_ARATH Glutathione S-transferase U5;	224)	71	33.	2.6	0.217	0.580	143	align	
sp	Q9SR36	\|GSTU8_ARATH Glutathione S-transferase U8;	224)	71	33.0	2.6	0.279	0.596		align	
sp	P13860.1	\|GUX1_PHACH Exoglucanase 1; 1,4-beta-cellobi	516)	74	34.0	3	0.327	0.615		align	
sp	P0A9D3.1	\|GSTA_ECO57 Glutathione S-transferase Gsta g	201)	70	32.6	3	0.276	0.529	87	align	
sp	P26641.3	EF1G_HUMAN Elongation factor 1-gamma; EF-1	437)	73	33.7	3.2	0.268	0.575	127	align	
sp	Q9LZI9.1	\|GSTFD_ARATH Glutathione S-transferase F13;	219)	70	32.	3.3	0.265	. 54	7	align	
sp	Q2NL00.3	GSTT1_BOVIN Glutathione S-transferase theta	240)	70	32.6	3.7	0.362	0.638		align	
sp	Q29387.2	\|EF1G_PIG Elongation factor 1-gamma; EF-1-g	432)	72	33.3	4.2	0.268	0.567		align	
sp	Q75906.1	DAD2_ASHGO DASH complex subunit DAD2; Outer	111)	66	31.2		0.312	0.667		align	
sp	Q61133.4	GSTT2_MOUSE Glutathione S-transferase theta	244)	69	32.2	5	0.193	0.545	176	align	
		GSTO1 HUMAN Glutathione S-transferase omega	241)				271	0.588			

The highest scoring unrelated sequence should have an $E()$-value ~ 1 In one search.

What about after 10 searches?
After 100?
After 10,000?
Expectations are turned into probabilities using: $1-\exp (-E)$

Highest unrelated E() values decrease with more searches

correct for multiple searches

Detectable homologs to human enzymes varying $E()$-value threshold

E() -values when??

- E() -values (BLAST expect) provide accurate statistical estimates of similarity by chance
- non-random -> not unrelated (homologous)
- $E($)-values are accurate (0.001 happens 1/1000 by chance)
- $E($ ()-values factor in (and depend on) sequence lengths and database size
- E()-values are NOT a good proxy for evolutionary distance
- doubling the length/score SQUARES the $E()$-value
- percent identity (corrected) reflects distance (given homology)

Statistics, validation, HMMs

- what is the probability of an alignment score?
- given two sequences
- after a database search
- after many database searches
- Hidden Markov Models
- transition state models
- profile HMMs
- HMMER2

Why HMMs (Hidden Markov Models) ?

- HMMs provide a general purpose strategy for fitting models with adjacent features to data
- gene models: genscan/twinscan
- conserved regions: phastcons
- protein domain families profile HMMs hmmer/pfam

profile-HMMs - Used by Pfam

- Anders Krogh in David Haussler's group.
- Takes the "standard" profiles and uses HMM based "standard" mathematics to solve two problems
- Profile-HMM scores are comparable (*)
- Setting gap costs
- Theoretical framework for what we are doing.
- (* this is not really true. see later)

A simple Hidden Markov Model

(a)

(b)

tate sequence (hidden)
\ldots (1) (1) (1) (2) 2 (2) 1) 1 ...
(c)

symbol sequence (observable):

$\ldots \begin{array}{llllllllllll}\ldots & \mathbf{A} & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{A} & \mathbf{G} & \mathbf{G} & \mathbf{C} & \mathbf{G} & \mathbf{A} & \mathbf{T}\end{array} \ldots$ emissions: $\begin{array}{llllllllllll}\mathbf{0 . 4} & 0.4 & 0.1 & 0.4 & 0.4 & 0.5 & 0.5 & 0.4 & 0.5 & 0.4 & 0.4\end{array}$
Figure 1 A simple hidden Markov model. A two-state HMM describing DNA sequence with a heterogeneous base composition is shown following work by Churchill [10]. (a) State 1 (top left) generates AT-rich sequence, and state 2 (top right) generates CG-rich sequence. Stat ransitions and their associated probabilities are indicated by arrows, and symbol emission probabilities for A,C,G and T for each state are indicated below the states. (For clarity, the begin and end states and associated state transitions necessary to model sequences of finite length mission probility distribution (c). The probility of the sequence is the pret of the trition . For ive DNA
CG-rich segment or an AT-rich segment.
Eddy, S. R. Hidden Markov models. Curr Opin Struct Biol 6, 361-365 (1996).

Profile (protein family) HMMs

123
C A F
C G W
C D Y
C V F C K Y

Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755-763 (1998).

HMM transitions and emissions are probabilities

a - c g
a - t a
a - c c
a $t \mathrm{t}$
a - c -

Given an HMM - how do we calculate a score (assuming an alignment)?

a - c g
a - t a
a - c c
a $t \mathrm{t}$
a - c -

$\begin{array}{llll}\text { a } 1.0 & 0.0 & 0.25\end{array}$
c $0.0 \quad 0.6 \quad 0.25$
$\begin{array}{llll}\mathrm{g} & 0.0 & 0.0 & 0.25\end{array}$
t 0.00 .40 .25

```
p(atg|HMM) = p(B)p(M1|B)p(a|M1)p(M2|M1)p(t|M2)p(M3|M2)p(g|M3)p(E|M3)
    = 1.0*1.0 * 1.0 * 0.8 * 0.4 * 0.8 * 0.25 * 1.0 = 0.064
p(attt|HMM) =
    p(B)p(M1|B)p(a|M1)p(I2|M1)p(t|I2)p(M2|I2)p(t|M2)p(M3|M2)p(g|M3)p(E|M3)
=1.0* 1.0 * 1.0 * 0.2 * 0.25 * 1.0* 0.4 * 0.8 * 0.25*1.0 = 0.004

\section*{HMM - finding the best alignment dynamic programming}


\section*{HMM - alignment with dynamic programming}

\(\begin{array}{llll}\text { a } 1.0 & 0.0 & 0.25\end{array}\)
c 0.00 .60 .25
g \(0.0 \quad 0.0 \quad 0.25\)
\(\begin{array}{llll}\mathrm{t} & 0.0 & 0.4 & 0.25\end{array}\)


\section*{HMMER- ‘Plan 7’ profile HMM}


Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755-763 (1998).

\section*{HMM Algorithms}
1. The scoring problem: P (seq I model)
"Forward" algorithm
(sums over all alignments)
2. The alignment problem: max P (seq, statepath I model)
"Viterbi" algorithm
3. The training problem:
"Forward-backward" algorithm and Baum-Welch expectation maximization

For profile HMMs, all three algorithms use O(MN) dynamic programming -- same as "standard" Smith/Waterman and Needleman/Wunsch.

\section*{HMM Alignment}
\(a \quad s\)


Needleman-Wunsch max log likelihood HMM Viterbi alignment

\(30+10+19\)
\[
F_{j}^{M}(i)=\log \frac{e_{M_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\log \left[a_{M_{j-1} M_{j}} \exp \left(F_{j-1}^{M}(i-1)\right)\right.
\]
\[
\left.+a_{I_{j-1} M_{j}} \exp \left(F_{j-1}^{I}(i-1)\right)+a_{D_{j-1} M_{j}} \exp \left(F_{j-1}^{D}(i-1)\right)\right]
\]

HMM Forward (score)
\(\sum\) probabilities


\section*{HMMR3.1 - jackhmmer: psiblast with HMMs}
```


jackhmmer :: iteratively search a protein sequence against a protein database

HMMER 3.1b2 (February 2015); http://hmmer.org/

Copyright (C) 2015 Howard Hughes Medical Institute.

Freely distributed under the GNU General Public License (GPLv3).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - -

query sequence file: mgstm1.aa

target sequence database: /slib2/fa_dbs/pir1.lseg

- - - - - - - - _ -

Query: sp|P10649|GSTM1_MOUSE [L=218]
Description: Glutathione S-transferase Mu 1; GST 1-1; GST class-mu 1;
Scores for complete sequences (score includes all domains):

```

```

 http://hmmr.org/

HMMR3.1 - jackhmmer: iteration 2

@ @

@@ Round: 2
@@ Included in MSA: 7 subsequences (query +6 subseqs from 6 targets) @ Model size: 218 positions
@
Scores for complete sequences (score includes all domains):

--- full sequence ---			--- best 1 domain ---			-\#dom-		Sequence		
E-value	score	bias	E-value	score	bias	exp	N			
$1.5 \mathrm{e}-111$	370.7	0.2	$1.7 \mathrm{e}-111$	370.5	0.2	1.0	1	sp\|P08010	GSTM2_RAT	
$8.5 \mathrm{e}-92$	306.1	0.0	$1.1 e-91$	305.7	0.0	1.0	1	sp\|P04906	GSTP1_RAT	
$3.1 \mathrm{e}-90$	301.0	0.0	$4.2 e-90$	300.6	0.0	1.0	1	sp\|P09211	GSTP1_HUMAN	
3.1e-84	281.4	0.5	$3.6 \mathrm{e}-84$	281.2	0.5	1.0	1	sp\|P00502	GSTA1_RAT	
2.2e-74	249.2	0.0	$2.8 \mathrm{e}-74$	248.8	0.0	1.0	1	sp\|P14942	GSTA4_RAT	
$1.9 \mathrm{e}-17$	63.0	0.0	2.3e-11	43.2	0.0	2.0	2	sp\|P04907	GSTF3_MAIZE	
2.7e-17	62.6	0.0	$3.5 \mathrm{e}-17$	62.2	0.0	1.2	1	sp\|P12653	GSTF1_MAIZE	
$3.6 \mathrm{e}-08$	32.7	0.0	$4.5 e-08$	32.4	0.0	1.1	1	sp\|P20432	GSTT1_DROME	
0.00016	20.8	0.0	0.0011	18.0	0.0	2.0	1	sp\|P0ACA5	SSPA_ECO57	
inclusion threshold ------										
0.078	12.0	0.1	11	5.0	0.0	3.4	2	sp\|P07814		\|SYEP_HUMAN

http://hmmr.org/

HMMER3.1 alignments w/ confidence limits

Alignments for each domain:
$==$ domain 1 score: 32.4 bits; conditional E-value: $3.4 \mathrm{e}-11$

GSTM1_MOUSE-i1 54 gllfgqlPllidgadkltqsrailrylarkyn.....lyGkdekerirvDmvedgveDlrlk.lislvykpdfek..ek 124 +P+1+D l +srai yl +ky+ ly k k r+ ++ + + + +++ y+ f k ++
sp|GSTT1_DROME 47 INPQHTIPTLVDNGFALWESRAIQVYLVEKYGktdsLYPKCPKKRAVINQRLYFDMGTLYQsFANYYYPQVFAKapAD 124 3355689*****99***************99964444899999999999865444444444404555565556652246 PP

GSTM1_MOUSE-i1 125 deylkalpeklklfeklLgkkaflvGnkisyvDillldlllvvev 169
+e+ k++++ + +++L+++++ +G+ ++ +Di l+ + ++ev
sp|GSTT1_DROME 125 PEAFKKIEAAFEFLNTFLEGQDYAAGDSLTVADIALVATVSTFEV 169
889999999999999**********************999888876 PP

HMMER3.1 - domain output

Alignments for each domain:

== domain 1 score: 43.2 bits; conditional E-value: $1.8 \mathrm{e}-14$
xxx RF
GSTM1_MOUSE-i1 40 dldreqwlkeklklgllfgqlPlliDGdlkltqsrailrylarkynlyGkde 91
dl + ++ + fgq+P+l+DGd++l++srai+ry+a+ky+++G d
DLTTGAHKOPDFLALNPFGOIPALVDGDEVLFESRAINRYIASKYASEGTDL 86 6666667778888889 ********************************985 PP
domain 2 score: 17.9 bits; conditional E-value: 9.2e-07

 YlkalpeklklfeklLgkkaflvGnkisyvDil..lldlllvvevlepkvLdaFPlLkafvaRlsalpkikk
$+++1+1++e ~ L+++1+G+++D+11+1+p++a P+k a+\quad+a+p+k$ sp|GSTF3_MAIZE 136 HAEQLAKVLDVYEAHLARNKYLAGDEFTLADANhaLLPALTSARPPRPGCVAARPHVKAWWEAIAARPAFQK 207 $55677777999 * * * * * * * * * * * * * * * * * * 99754499 * 999999876$ PP

Improving sensitivity with protein/domain family models

- HMMER3 - jackhmmer - method

1. do HMMER (Hidden Markov Model, HMM) search with single sequence
2. use query-HMM-based implied multiple sequence alignment to more accurate HMM
3. repeat steps 1 and 2 with HMM

- HMMER3- results:

1. Less over-extension because of probabilistic alignment
2. Used to construct Pfam domain database

- Many protein families are too diverse for one HMM, Pfam divides families into multiple HMMs and groups in Clans

3. Clearly homologous sequences are still missed

Missing homology beyond the HMM model

>>tr|Q8LNM4|Q8LNM4_ORYSJ Eukaryotic aspartyl protease family protein vs
$\gg t r|Q 2 Q S I O| Q 2 Q S I O _O R Y S J$ Glycosyl hydrolase family 9 protein, expressed OS=0 (694 aa)
qRegion: 134-277:172-311 : score=508; bits=240.8; LPr=67.0 : Aspartyl protease
s-w opt: 508 z-score: 1248.7 bits: $240.8 \mathrm{E}(1): 9.6 \mathrm{e}-68$
Smith-Waterman score: 508; 62.5\% identity (79.2\% similar) in 144 aa overlap

130	140	150	160	170	180	190	200

Q8LNM4 TDACKSIPTSNCSSNMCTYEGTINSKLGGHTLGIVATDTFAIGTATASLGFGCVVASGIDTMGGPSGLIGLGRAPSSLVS
: : : : : : : : : : : : : : : : : .: : : : : : : : : : : : : : : : : : .: : : : .: : : . .
Q2QSI0 LCESISNDIHNCSGNVCMYEASTNA---GDTGGKVGTDTFAVGTAKANLAFGCVVASNIDTMDGSSGIVGLGRTPWSLVT

170	180		190		200		210		220		230
210	220	230		240		250		260		270	
210	280										

Q8LNM4 QMNITKFSYCLTPHDSGKNSRLLLGSSAKLAGGGNSTTTPFVKTSPGDDMSQYYPIQLDGIKAGDAAIALPPSGNTVLVQ

Q2QSIO QTGVAAFSYCLAPHDAGKNNALFLGSTAKLAGGGKTASTPFVNIS-GNDLSNYYKVQLEVLKAGDAMIPLPPSGVLWDNY

Pfam misses/mis-aligns proteins distant from the model

- For diverse families, a single model can find, and miss, closely related homologs
- Even if homologs are found, alignments may be short

How much improvement with PSSMs/ HMMs?

Pearson (2017) Nuc.
Acids Res. 45:e46

Statistics, validation, HMMs

- what is the probability of an alignment score?
- given two sequences
- probability of match, times number of match run starts: extreme value
- after a database search
- Bonferroni correction for database size
- after many database searches
- Bonferroni correction for number of searches (?)
- what happens to false negatives?
- Hidden Markov Models
- transition state models
- profile HMMs
- HMMER3
- better, but sometimes missed
- How might one find "missing" homologs?

