

Query size mLib. seq. size: nDB Entries DmnD/0.01Bit threshold200200100,0004x109/0.00142
450 450 100,000 2x10 ¹⁰ /0.001 44
450 450 10,000,000 2x10 ¹³ /0.001 51

Smith-Waterman (ssearch36) – highest scoring unrelated from domains									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$									
What about after 10 searches? After 100? After 10,000?									
Expectations are turned into probabilities using: 1 – exp(-E) fasta.bioch.virginia.edu/biol4230 18									

	hm	mbui	ld –								
	f	rom r	multi	ole se	eque	nce a	alignr	nent	to hn	nm	
	CLUSTAL 2.0.12 multiple sequence alignment										
	GSTP1_HUMAN MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVFTWQEGS GSTM1_HUMAN MPMILGYWDIRGLAHAIRLLLEYTDSSYEEKKYTMGDAPDYDRSQWLNEK GSTM3_HUMAN MSCESSMVLGYWDIRGLAHAIRLLLEYTDSSYEEKKYTMGDAPDYDRSQWLDVK GSTA1_HUMAN MAEKPKLHYFNARGRMESTRWLLAAAGVEFEEKFIKSALDLDKLR : *: ** :*							NEKFKLGI DVKFKLDI	D		
	 GSTP1_HUMAN PGCLDAFPLLSAYVGRLSARPKLKAFLASPEYVNLPINGNGKQ GSTM1_HUMAN PKCLDAFPNLKDFISRFEGLEKISAYMKSSRFLPRPVFSKMAVWGNK GSTM3_HUMAN PKCLDEFPNLKAFMCRFEALEKIAAYLQSDQFCKMPINNKMAQWGNKPVC GSTA1_HUMAN SSLISSFPLLKALKTRISNLPTVKKFLQPCSPKPFPMGKSLEEARKIFRF ** *. *: .: :: . *: :: . *: ::										
нмм	A	с	D	Е	F	G	н	I	W	Y	20 amino acids
СОМРО		m->i 4.31739 4.42229	2.89583	2.62705	3.16314		3.80746			3.29333	7 transitions
1	0.49776 2.61925	2.03151 2.59613 4.42225	1.34335 4.05856	0.66196 3.53413	0.72534 3.26650	0.00000 3.61183	* 4.19513	2.30607	4.93453	3.72168	31
2	0.03191 2.06827 2.68618	3.85649 4.54009 4.42225	4.57884 3.12380 2.77519	0.61958 2.21293 2.73123	0.77255 3.75914 3.46354	0.51074 3.45042 2.40513	0.91641 3.76301 3.72494	3.02955	5.15348	3.87801	4 a
3	2.61989 2.68618	4.02764 4.76650 4.42225 4.14859	2.97682 2.77519	2.05462 2.73123	4.02949 3.46354	3.42092 2.40513	3.68173 3.72494				
	-In(p) fasta.bioch.virginia.edu/biol4230										34

HMMR3.1 - jackhmmer: psiblast with HMMs

jackhmmer :: iteratively search a protein sequence against a protein database # HMMER 3.1b2 (February 2015); http://hmmer.org/ # Copyright (C) 2015 Howard Hughes Medical Institute. # Freely distributed under the GNU General Public License (GPLv3). # query sequence file: mgstml.aa # target sequence database: /slib2/fa_dbs/pir1.lseg - - - - - - - sp|P10649|GSTM1_MOUSE [L=218] Query: Description: Glutathione S-transferase Mu 1; GST 1-1; GST class-mu 1; Scores for complete sequences (score includes all domains): --- full sequence --- -- best 1 domain ----#dom-E-value score bias E-value score bias exp N Sequence ----- ---------- ----- --------- --
 1.6e-124
 413.2
 1.7
 1.0
 1
 sp |P08010 |GSTM2_RAT

 1.2e-24
 86.6
 0.0
 1.1
 1
 sp |P09211 |GSTP1_HUMAN

 5.6e-23
 81.1
 0.0
 1.1
 1
 sp |P04906 |GSTP1_RAT

 2e-14
 53.2
 0.3
 1.1
 1
 sp |P0502 |GSTA1_RAT
 1.4e-124 413.3 1.7 8.3e-25 87.1 0.0 4e-23 81.6 0.0 1.6e-14 53.5 0.3 + + 1e-08 34.5 0.1 0.00028 20.0 0.0
 1.5e-08
 34.0
 0.1
 1.2
 1
 sp
 P14942
 GSTA4_RAT

 0.15
 11.1
 0.0
 2.5
 3
 sp
 P04907
 GSTF3_MAIZE
 + + -- inclusion threshold ---15.6 0.0 1.5 1 sp|P12653|GSTF1 MAIZE 0.0031 16.6 0.0 0.0061 http://hmmr.org/ fasta.bioch.virginia.edu/biol4230 35

HMMER3.1 alignments w/ confidence limits > sp P20432 GSTT1 DROME Glutathione S-transferase 1-1; DDT-dehydrochlorinase; GST class-theta	
<pre># score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to 1 ! 32.4 0.0 3.4e-11 4.5e-08 54 169 47 169 2 183 Alignments for each domain: == domain 1 score: 32.4 bits; conditional E-value: 3.4e-11 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</pre>	x RF k 124 + D 124
fasta.bioch.virginia.edu/biol4230	37

Г

	04907 G	STF3_M	AIZE Glut		ransfer	ase 3; GST	• class-ph	i member 3; ali to		env to	acc
1 !	43.2	0.0	1.8e-14	2.3e-11	40	91	35	86 207	16	93	0.86
_ sp GSTF domain GSTM1_M	3_MAIZE 2 sco OUSE-i1	40 dl dl 35 DL 66 re: 17 x 127 y 136 H	dreqwlkekl + ++ TTGAHKQPDF 6666777888 .9 bits; xxxxxxxxx lkalpeklkl +++1 + 1 + AEQLAKVLDV	feklLgkkafl +e L +++l YEAHLARNKYI	liDGdlk l+DGd++ LVDGDEV ******* E-valu xxxxxxx vGnkisy +G+ + AGDEFTL	ltqsrailry l++srai+ry LFESRAINRY ************************************	larkynlyG +a+ky+++G IASKYASEG ********* xxxxxxxxx llvvevleg l + g LTSARPPRF	kde 91 d TDL 86	fvaRlsal] + + a+] WWEAIAAR	okikk 19 o +k PAFQK 20	
				fasta	.bioch.v	virginia.edu/	′biol4230				38

- 1. do HMMER (Hidden Markov Model, HMM) search with single sequence
- 2. use query-HMM-based implied multiple sequence alignment to more accurate HMM
- 3. repeat steps 1 and 2 with HMM
- HMMER3– results:
 - 1. Less over-extension because of probabilistic alignment
 - 2. Used to construct Pfam domain database
 - Many protein families are too diverse for one HMM, Pfam divides families into multiple HMMs and groups in Clans
 - 3. Clearly homologous sequences are still missed

fasta.bioch.virginia.edu/biol4230

39

