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+ Reviewing sites: affinity and specificity
— representation
— binding and specificity
— (equilibria and competition)
+ Comprehensive site identification
— binding, consensus, and conservation
* What does complete understanding look like?

— have DNA sequence, identify binding
affinity/occupancy

— have protein sequence of binding domain, identify DNA
target
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DNA-Protein interaction: binding vs specificity

Dynamic questions:
+ Is DNA site S bound to a transcription factor TF
+ Is the site bound frequently enough to affect
transcription
+ Where is most of the TF binding?
— on specific DNA sites
— on non-specific sites
— on all sites with Ky < 10*

— there are typically 10 more non-specific than specific
sites (but are all accessible)

+ what happens when the TF changes state?

— higher concentration

— more active (tighter binding) because of co-
factor/modification
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Terminology: Sites vs Motifs

{Sites} <-> Motif
Think restriction sites:

EcoRl: élGAATTC <>GAATTC
Hincll {GTTAAC,GTTGAC,GTCAAC,GTCGAC} <> GTYRAC

Transcription factor motifs should be quantitative, give
different scores to different sites, reflecting

differences in binding affinity.

Also: site is specific location in genome
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Representations/Models
of Protein-DNA binding

+ Transcription factors don’t bind to just one
sequence

« A “Consensus sequence” is usually the
preferred site, but similar sequences also
bind well

+ Not all variants bind equally well; some
positions contribute more to the specificity
than others
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log(2)-odds

Position Weight Matrix Model
(PWM, also PSSM)
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DNA-Protein interaction: binding vs specificity
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DNA-Protein interaction: binding vs specificity

Dynamic questions:

+ Is DNA site S bound to a transcription factor TF
+ Is the site bound frequently enough to affect

transcription

+ Where is most of the TF binding?

— on specific DNA sites
— on non-specific sites
— on all sites with Ky < 10~

— there are typically 10 more non-specific than specific

sites (but are all accessible)

+ what happens when the TF changes state?

— higher concentration

— more active (tighter binding) because of co-

factor/modification
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DNA-Protein interaction: binding vs specificity
Specificity

+ Where is most of the TF?
— on specific DNA sites
— on non-specific sites
— on all sites with Ky < 10
— there are typically 10 more
non-specific than specific
sites (but are all accessible)
* What happens when the
TF changes state?
— higher concentration

— more active (tighter binding)
because of co-factor/
modification
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Transcription factor binding —
modern approaches

+ Have (functional) protein?

— measure affinities of protein against large sets of random
DNA sequences (chromatin?)

— transform protein into cells, look at reporter genes
+ Have antibody to protein?

— ChIP-Chip/ChIP-seq — measure where the factor is on
chromosomal DNA (in specific states)

— peak width ALWAYS larger than binding sites

— isolate surrounding DNA sequence, use consensus
strategies (meme) also works with other chromatin
modifications

+ Have co-expressed sets of genes?

— identify the genes, isolate sequences near promoters
(enhancers?)

— use consensus strategies (meme)
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Transcription factor binding —
direct measurements
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Transcription

factor binding —

direct

measurements

Fig. 4. In vivo function prediction for
Pho4p and Cbf1p. (A and B) Genes
with regulatory sequences
determined to be bound by our in
silico method. All genes shown here
have a Pocc of above 0.2 and a
sensu stricto conservation score of
25% or above. Pie charts show the
functional distribution of the gene
sets. (C and D) Venn diagrams
comparing our predicted gene sets
to gene sets determined with use of
expression microarrays and ChIP-
chip.
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Transcription factor binding —

direct measurements
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Transcription factor binding —
direct measurements
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Transcription factor binding —
direct (reporter) measurements
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High-throughput in vitro binding site
analyses

« Can give good, quantitative models of
intrinsic binding specificity

- More data alone isn’t sufficient to give better
models, also need good analysis methods

+ Log-odds method is based on assumptions
(independence) that may not be true

+ Energetic models can give better descriptions

— Non-linear relationship between binding affinity
and binding probability at high TF concentration

fasta.bioch.virginia.edu/biol4230 17

High-throughput in vitro binding site
analyses — does it work?
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Transcription factor binding —
direct measurements
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Transcription factor binding —
modern approaches

+ Have (functional) protein?

— measure affinities of protein against large sets of random
DNA sequences (chromatin?)

— transform protein into cells, look at reporter genes

+ Have antibody to protein?

— ChIP-Chip/ChIP-seq — measure where the factor is on
chromosomal DNA (in specific states)

— peak width ALWAYS larger than binding sites
— isolate surrounding DNA sequence, use consensus
strategies (meme) also works with other chromatin
modifications
+ Have co-expressed sets of genes?

— identify the genes, isolate sequences near promoters
(enhancers?)

— use consensus strategies (meme)
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|dentifying regulatory sites in chromatin
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Regulatory sites in chromatin: GSTM1
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Regulatory sites in chromatin: MAP3K3
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Regulatory sites in chromatin
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Regulatory sites in chromatin
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Regulatory sites in chromatin
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Chromatin ImmunoPrecipitation - Sequencing
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What do ChlP-Seq signals look like?]
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What do ChlP-Seq signals look like?
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There are typically 100 — 1,000X as many
motif/PWM matches as detectable binding sites
Distribution of EGR1 motifs relatlve to ChIP-seq peaks in K562 cells
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But "sites" are much more concentrated at ChlP-seq peaks
Given a set of intervals from peaks, find sites with
consensus methods (meme)

Landt, S. G. et al. Genome
Res 22, 1813—-1831 (2012).
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ChIP-seq summary:

+ Result quality depends on antibody,
immunoprecipitation, negative controls — look
for reproducible peaks

+ Most reads (signal) do not come from peaks

+ Many more PWM sites than peaks, but sites
more concentrated near peaks

+ High peaks # large effect
+ Qualitative — enriches regions of interest

fasta.bioch.virginia.edu/biol4230 31

Transcription factor binding —
modern approaches

+ Have (functional) protein?

— measure affinities of protein against large sets of random
DNA sequences (chromatin?)

— transform protein into cells, look at reporter genes

+ Have antibody to protein?

— ChIP-Chip/ChlIP-seq — measure where the factor is on
chromosomal DNA (in specific states)

— binding sites ALWAYS larger than peak width
— isolate surrounding DNA sequence, use consensus
strategies (meme) also works with other chromatin
modifications
+ Have co-expressed sets of genes?

— identify the genes, isolate sequences near promoters
(enhancers?)

— use consensus strategies (meme)

fasta.bioch.virginia.edu/biol4230 32
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Transcription factor binding —
position independence

Binding energy model including interactions
makes more accurate predictions of in vitro
binding specificity than the PWM for Hnf4a.
(A) Graphical representation of Hnf4a
binding energies estimated from PBM data
under the PWM model (Supporting
Information, Figure S1). Negatives of
binding energy (in units of RT) are plotted
on the y-axis. Energies are normalized such
that the average energy at each position is
0. This energy logo is equivalent to the
“affinity logo” from Foat et al. (2006). (B)
[ § . Performance of model shown in A on test

§

PBM data. (C) Binding energy model
. estimated from the same training data but
i ol * including interaction energies between
) positions 4 and 5 (Figure S2). (D)
Performance of the energy model including
interactions on test PBM data.
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Zhao, Y., et al. Genetics 191,

fasta.bioch.virginia.edu/biol4230 781-790 (2012). -

Transcription factor binding —
position independence
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(From abstract): We find that the specificity of most TFs is well fit with the simple PWM model, but in some
cases more complex models are required. We introduce a binding energy model (BEM) that can include
energy parameters for nonindependent contributions to binding affinity. We show that in most cases where a
PWM is not sufficient, a BEM that includes energy parameters for adjacent dinucleotide contributions models

the specificity very well.
P yvery Zhao, Y., et al. Genetics 191,
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How well do methods work?
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How well do methods work?
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In vitro defined PWM's accurately predict in vivo binding
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Information content vs accuracy

Figure 4 Characteristics of KIf9
motifs produced by the eight
PWM-based algorithms evaluated
in this study. The algorithms are
ranked top to bottom in order of
the overall score of their PWM for
this TF in our evaluation scheme.
Two popular visualization methods
of the PWMs produced

by each algorithm are depicted.
On the left are traditional
sequence l0gos39,40, which
display the information content of
each nucleotide at each position;
the total information content (I.C.)
of the PWM is given to the left of
this logo. On the right are
frequency logos, in which the
height of each nucleotide
corresponds to its frequency of
occurrence at the given
position40.

Algorithm Score I1.C.
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PWM_align E  0.907 9.
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MatrixREDUCE  0.828  5.59

FeatureREDUCE 0.803 578 X
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Seed-And-Wobble 0.730 13.32

RankMotif++ 0709 10.22
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Weirauch, M. T. et al.. Nat Biotechnol
31, 126-134 (2013).

fasta.bioch.virginia.edu/biol4230 37

DNA-Protein interaction:
what is complete understanding?

1. Understand the DNA binding site
2. ldentify the amino-acids that read the DNA

sequence

3. understand how changes in the protein
change the DNA binding site

4. predict DNA binding site preferences from
protein sequence (engineering)

Noyes, M. B. et al. Cell
133, 1277-1289 (2008).

fasta.bioch.virginia.edu/biol4230 38
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DNA-Protein interaction (homeobox):
what is complete understanding?

3
N-terminal Arm  Recognition Helix

Noyes, M. B. et al. Cell

133, 1277-1289 (2008). fasta.bioch.virginia.edu/biol4230 39
DNA-Protein interaction (homeobox):
what is complete understanding?

..
Asn—»Ade C‘2I:I ‘.;::1:"3/_. .................. ': g_
— N if3 mewn |k

Asn47 —m ThyWeak 47 ,T‘ 3 ’TI --------------- ;

(V)43 TheA7 —> Thy 54 =W

S, ToAT ek \ |:] 4 I:’ / Gua <— Arg%4, #(1v)47
(IV)47,GInS0, Met4  —» (T=G)
47 GIn50 Met54
(IN)47, GInS0, (Ary)54 —=  Thy 47 I:J 5 I:] 7 A=G  =— (INM?, GInS0, Mot
Th47, GIn50 —»  Thyweak 5 0 A>g = (IVM)47,GIn%0, Ala54
(IV)47, LysS0, A1a54 —=  Cyt G>a —=— Thr#7, GInS0, Thr54

Asn?7 Lys50, GIn54 —» Ade 54 |:] 6 I:] Gra = lle?7, GInS0, Tyr54
#(V)47, Arg54 —=  Ade 3 -

Cyt = (IVIN)A7, Lys50, (a/@)54

Noyes, M. B. et al. Cell
133, 1277-1289 (2008). fasta.bioch.virginia.edu/biol4230
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DNA-Protein interaction (homeobox):
what is complete understanding?

BarHL1 : p value =8.48E-07 Nkx3-2 : p value = 5.04E-08

: 3 Comparison of the Predicted and
! T A AT 23 I | A A T Determined Recognition Motifs for Six
J AX A Human Homeodomains: The

’ p specificities of the human factors were
,¢TAAIIA

s A determined with the B1H system. In
J== - 3 each case, the “determined” compares
PitX2 : p value = 5.50E-09 Six3 : p value = 1.27E-06 generated with our algorithm.

favorably with the “predicted” motif
zTAATCCe) i+ TGATA

s
s

bits
bt

Determined| Predicted
Determined| Predict

Predicted
o
s

s
s

Determined| Predicted

i TAATCC | i TGATA

— For the homeobox family, it is
TGIF2 : p value = 1.83E-07 Vsx1 : p value = 2.13E-08 possible to predict the DNA

3’ 3 oo .
gr T ACA B zTAATTA binding site from the amino-
[ a H
E T acid sequence
[=TGACA | [/ TAATT
g .x A | 8. A

Noyes, M. B. et al. Cell

133, 1277-1289 (2008). fasta.bioch.virginia.edu/biol4230 4

Characterizing DNA binding sites —
high throughput approaches
+ Affinity and specificity
— transcription factors have higher affinity for their specific
binding site than non-specific sites
— but there are 10 — 107 more non-specific sites
— ratios of specific/non-specific binding are < 108
— alarge fraction of transcription factor binging is non-specific
+ High-throughput in vitro methods provide accurate
binding constants

— PWM (independent positions) usually provides accurate
model of binding

— for a fraction of sites, a binding energy term that includes
non-independence helps

+ ChIP-Seq provides large lists of binding sites
— but small fraction of motif matches

+ For large, highly studied families (homeobox), the
amino-acid recognition code is understood

fasta.bioch.virginia.edu/biol4230 42

21



