

fasta.bioch.virginia.edu/biol4230

Represer	ntinę	g Cor	nsensu	is Sec	quenc	ces ("	ΤΑΤΑ	A" box)
present/absent	A C G T	0 0 0 1	1 0 0 0	0 0 0 1	1 0 0 0	1 0 0 0	0 0 0 1	
counts	A C G T	0 1 1 10	11 0 0 1	4 1 1 6	7 2 2 1	9 1 1 1	0 0 0 12	
percent	A C G T	2 9 10 79	95 2 1 3	26 14 16 44	59 13 15 13	51 20 13 17	1 3 0 96	$S = f_{pos,b}$
log-odds	A C G T	-38 -15 -13 17	19 -38 -48 -32	1 -8 -6 8	12 -10 -7 -9	10 -3 -10 -6	-48 -32 -48 19	$S = \log\left(\frac{f_{pos,b}}{p_b}\right)$

Information content and binding energy

If we denote H_i the *binding energy* for a DNA site S_i , then the probability that the protein would be bound to S_i (at equilibrium) is given by the Boltzman distribution:

$$P_i = \frac{e^{-m}}{Z}$$

where Z is the *partition function* and is defined as the sum of the e^{-Hi} over all possible sites S_{x} : $Z = \sum e^{-Hx}$

$$Z = \sum_{x} e^{-}$$

The average binding energy for this protein over all sites S_i would be:

$$\langle H \rangle = \sum P_i H_i = -\sum_i (P_i \ln P_i) - \ln Z$$

The sum on the right is called the entropy of the probability distribution.

A useful measure of difference between two probability distributions is the relative entropy, which is defined as:

$$H(P,Q) \equiv \sum_{i} P_{i} \ln \frac{P_{i}}{Q_{i}}$$

Benos, P. V., Lapedes, A. S. & Stormo, G. D. *Bioessays* 24, 466–475 (2002). fasta.bioch.virginia.edu/biol4230

E. coli CRP binding regions

CE1CG	ta atgtttgtgctggtttttgtggcatcgggcgagaatagcgcgtggtgtgaaagactgtttttttgatcgttttcacaaaaatggaagtccacagtcttgacag
ECOARABOP	gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataag
ECOBGLR1	a caa a t c c caa t a a c t t a t t t t
ECOCRP	cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgtatgcaaaggacgtcacattaccgtgcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtagcagtacagttgatagcagtgatgcagtacagttgatagcagtgatgcagtagcagtgatgcagtagcagtgatggatg
ECOCYA	$a \verb+cggtgctacacttgtatgtagcgcatctttctttacggtcaatcagcaaggtgttaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaaa$
ECODEOP2	agtgaattatttgaaccagatcgcattacagtgatgcaaacttgtaagtagatttccttaattgtgatgtgtatcgaagtgtgttgcggagtagatgttagaata
ECOGALE	$\verb"gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattccatgtcacacttttcgcatctttgttatgctatggttatttcataccataagcc"$
ECOILVBPR	$\verb"gctccggcggggttttttgttatctgcaattcagtacaaaacgtgatcaacccctcaattttccctttgctgaaaaattttccattgtctcccctgtaaagctgt"$
ECOLAC	a a cgc a atta atgtg agttagct cact cattagg caccc cagg cttt a cactt tatgct t cgg ctcg tatgttgtgtg ga attgt gag cgg at a a caatt t cact to cgg ctcg tatgttgt gag cgg at a caatt t cact to cgg ctcg tatgt to cgg ctcg tatgttgt gag cgg at a caatt t cact to cgg ctcg tatgt to cgg ctcg tatgttgt gag cgg at a caatt t cact to cgg ctcg tatgt to cgg ctg tatgt tatgt to cgg ctg tatgt to cgg ctg tatgt tatgt to cgg ctg tatgt tatgt tatgt tatg ctg tatgt tat
ECOMALBA	a cattaccgccaattctgtaacagagatcacacaaagcgacggtggggcgtaggggcaaggaggatggaaagaggttgccgtataaagaaactagagtccgttta
ECOMALBA	ggaggaggcgggaggatgagaacacggcttctgtgaactaaaccgaggtcatgtaaggaatttcgtgatgttgcttgc
ECOMALT	gatcagcgtcgttttaggtgagttgttaataaagatttggaattgtgacacagtgcaaattcagacacataaaaaaacgtcatcgcttgcattagaaaggtttct
ECOOMPA	$\verb"gctgacaaaaaagattaaacataccttatacaagactttttttcatatgcctgacggagttcacacttgtaagttttcaactacgttgtagactttacatcgcc"$
ECOTNAA	${\tt ttttttaaaaattcttacgtaatttataatctttaaaaaaagcatttaatattgctccccgaacgattgtgattcgattcacatttaaaacaatttcaga$
ECOUXU1	${\tt cccatgagagtgaaattgttgtgatgtggttaacccaattagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctatacgccatgtagaacttatacgccatctcatccgatgcaagcatgtagaacttatacgccatctatacgccatgtagaacttagaacttagaacttatacgccatgtagaacttagaacqcatgtagaacttagaacttagaacqccatgtagaacttagaacqccatgtagaacttagaactta$
PBR322	${\tt ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctc}$
TRN9CAT	${\tt ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaatgagacgttgatcggcacg$
TDC	gattttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatttgtgagtggtcgcacatatcctgtt

fasta.bioch.virginia.edu/biol4230

	E. coli CRP binding sites							
CE1CG	taatgtttgtgctggtttttgtggcatcgggcgagaatagcgcgtggtgtgaaagactgtttt <u>TTTGATCGTTTTCACAAA</u> aatggaagtccacagtctt	gacag						
ECOARABOP	$gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta \underline{\texttt{TTTGCACGGCGTCACACT}} ttgctatgccatagcatttttatccacacacgcgtaacaaagtgtctatgccatagcatttttatccacacacgcgtaacaaagtgtctatgccatagcatttttatccacacaca$	ataag						
ECOBGLR1	$a {\tt caaaatcccaataacttaattattgggatttgttatataaactttataaattcctaaaattacacaaagttaataac {\tt TGTGAGCATGGTCATATT} {\tt tttattattattgggatttgttatatataactttattaaattcctaaaattacacaaagttaataac {\tt TGTGAGCATGGTCATATT} {\tt tttattattattgggatttgttattgttatatataactttattaattcctaaaattacacaaagttaataacttaataactttattattgtggatttgttattattattattattgttatta$	tcaat						
ECOCRP	$cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgta \underline{\texttt{TGCAAAGGACGTCACATT}} accgtgcagtacagttgatgtactgcatgtatgtactgcatgtatgt$	atagc						
ECOCYA	$acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagcaagg\underline{TGTTAAATTGATCACGTT}ttagaccattttttcgtcgtgaaactaaaaataaaaataaaaataaaaaataaaaaaaa$	aaacc						
ECODEOP2	$agtgaatta \underline{\texttt{TTTGAACCAGATCGCATT}} a cagtgatg caa acttg taagtag atttcctta attgtg atgtg tatcg aagtgt gt gt gc gg agt agatgt tagtgt at the set of the set $	gaata						
ECOGALE	$gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattcca \underline{\texttt{TGTCACACTTTTCGCATC}} tttgttatgctatggttatttcataccataccataccat$	aagcc						
ECOILVBPR	$\verb"gctccggcgggttttttgtta \underline{\texttt{TCTGCAATTCAGTACAAA}} \verb"acgtgatcaacccctcaattttccctttgctgaaaaattttccattgtctcccctgtaaaaattttccattgtctccccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaattttccattgtctccccctgtaaaattttccattgtctcccctgtaaaaattttccattgtctcccctgtaaaaattttccattgtctccccctgtaaaattttccattgtctccccctgtaaaattttccattgtctcccctgtaaaattttccattgtccccctgtaaaattttcccctgtaaaaattttccattgtctccccctgtaaaaattttccattgtccccctgtaaaaattttccattgtccccctgtaaaaattttccattgtccccctgtaaaaattttccattgtccccctgtaaaaattttccattgtccccctgtaaaaattttccattgtcccctgtaaaaatttttccattgttcccctgtaaaaatttttccattgtcccctgtaaaaatttttccattgttcccctgtaaaaattttccattgtcccctgtaaaaattttccattgtccccctgtaaaaattttccattgtccccctgtaaaaattttccattgtccccctgtaaaaatttttccattgttcccccctgtaaaaattttccattgttcccctgtaaaaattttcccctgtaaaaaatttttcccccccc$	gctgt						
ECOLAC	$a \verb+acgcaattaa _ TGTGAGTTAGCTCACTCA \\ ttaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaattgtgtgtg$	ttcac						
ECOMALBA	$a \verb+cattaccgccaattcTGThACAGAGATCACACAaagcgacggtggggcgtaggggcaaggaggatggaaagaggttgccgtataaagaaactagagtccgtataaagaaactagagtcgcgtaggggcaaggaggatggaaagaggttgccgtataaagaaactagagtcgggggggatggaaggaggatggaaagaggttgccgtataaagaaactagagtcgggggggg$	gttta						
ECOMALBA	$ggaggaggggggggggggggaggatgagaacacggcttctgtgaactaaaccgaggtcatgtaaggaattt \underline{CGTGATGTTGCTTGCAAA}aatcgtggcgattttatgtgaggaggaggatgaggaggatgaggagggggg$	gcgca						
ECOMALT	$gatcagcgtcgttttaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtgagttgttagaaaggtgagtggagtggagtggagtggagtggagtggagtggagtggagggagtggagga$	tttct						
ECOOMPA	$\tt gctgacaaaaaagattaaacataccttatacaagactttttttcatatg\underline{CCTGACGGAGTTCACACT} tgtaagttttcaactacgttgtagactttacaagacttacaagactttacaagacttacaagactttacaagactttacaagactttacaagactttacaagactttacaagactttacaagacttacaagactttacaagactttacaagactttacaagactttacaagactttacaagacttacaagacttacaagacttacaagacttacaagacttacaagacttacaagacttacaagacttacaagacttacgacgacgacgacgacgacgacgacgacgacgacgacga$	tegee						
ECOTNAA	$\tt ttttttaaacattaaaattottacgtaatttataatotttaaaaaaagcatttaatattgctccccgaacgat\underline{\tt TGTGATTCGATTCACATT}taaacaatttattattgctccccgaacgat\underline{\tt TGTGATTCGATTCACATT}taaacaatttattattattattgctcccccgaacgat\underline{\tt TGTGATTCGATTCACATT}taaacaatttattattgctcccccgaacgat\underline{\tt TGTGATTCGATTCACATT}taaacaatttattattgctcccccgaacgat\underline{\tt TGTGATTCGATTCACATT}taaacaatttattattgctcccccgaacgat\underline{\tt TGTGATTCGATTCGATTCACATT}taaacaatttattgctcccccgaacgat\underline{\tt TGTGATTCGATTCGATTCACATT}taaacaatttattgctccccccgaacgat\underline{\tt TGTGATTCGATTCGATTCACATT}taaacaatttattgctcccccgaacgat\underline{\tt TGTGATTCGATTCGATTCACATT}taaacaatttgctccccgaacgat\underline{\tt TGTGATTCGATTCGATTCACATT}taaacaatttgctcccccgaacgatttattattgctcccccgaacgatgatttattgctccccgaacgatgatttattgctccccgaacgatgatttattgctccccgaacgatgatttattgctccccgaacgatgatgatttattgctccccgaacgatgatgatgatgatgatgatgatgatgatgatgatgatg$	tcaga						
ECOUXU1	${\tt cccatgagagtgaaattgt} \underline{{\tt TGTGATGTGGTTAACCCA}} {\tt attagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatctcatccgatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttagaacttatacgccatgtagaacttatacgccatgtagaacttagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttatacgccatgtagaacttagaa$	caagc						
PBR322	$\tt ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcgg \underline{\tt TGTGAAATACCGCACAGA}tgcgtaaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagaaaataccgcatcaggagagaaaataccgcatcaggagaaaataccgcatcaggagagaaaataccgcatcaggagagaaaataccgcatcaggagagaaaataccgcatcaggagagaga$	cgctc						
TRN9CAT	$\tt ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaa \underline{\tt TGAGACGTTGATCGC} \\ \tt ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaa \underline{\tt tgacgaa} \\ \tt ctgtgacggaagatcacttggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaaa \underline{\tt tgacgaa} \\ \tt ctgtgacggaagatcacttggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaa \underline{\tt tgacgaaaa} \\ \tt ctgtgacggaagatcacttggtgtccctgttgataccgggaagccctgggcgaagccctgggcgaagatcacttttggcgaaaagccctgggcgaagatgaagccctgggcaactttttggcgaaaagccctgggaagacgcctgggcgaagatgaagccctgggcgaagaagccctgggcgaagacgcggaagacgcggaagacggcggaagacgcggaagaa$	<u>GCAC</u> g						
TDC	$gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatt\underline{\texttt{TGTGAGTGGTCGCACATA}}tcontent to the second second$	ctgtt						
	fasta.bioch.virginia.edu/biol4230	26						

	E. coli CRP binding sites – location gives alignment
CE1CG	taatgtttgtgctggtttttgtggcatcgggcgagaatagcgcgtggtgtgaaagactgtttt <u>TTTGATCGTTTTCACAAA</u> aatggaagtccacagtcttgacag
ECOARABOP	$gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta \underline{\mathrm{TTTGCACGGCGTCACACT}} tgctatgccatagcatttttatccataag$
ECOBGLR1	a caa at ccca at a actt a att att ggg att t gt t at a tat a actt t at a a att cct a a a a
ECOCRP	cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgta <u>TGCAAAGGACGTCACATT</u> accgtgcagtacagttgatagc
ECOCYA	$acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagcaagg\underline{TGTTAAATTGATCACGTT}ttagaccattttttcgtcgtgaaactaaaaaaaacc$
ECODEOP2	agtgaatta <u>TTTGAACCAGATCGCATT</u> acagtgatgcaaacttgtaagtagatttccttaattgtgatgtgtatcgaagtgtgttgcggagtagatgttagaata
ECOGALE	$gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattcca \underline{\texttt{TGTCACACTTTTCGCATC}tttgttatgctatggttatttcataccataagcc$
ECOILVBPR	gctccggcggggttttttgtta <u>TCTGCAATTCAGTACAAA</u> acgtgatcaacccctcaattttccctttgctgaaaaattttccattgtctcccctgtaaagctgt
ECOLAC	aacgcaattaa <u>TGTGAGTTAGCTCACTCA</u> ttaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcac
ECOMALBA	acattaccgccaattc <u>TGTAACAGAGATCACACA</u> aagcgacggtggggggggggggggggggggggggggggg
ECOMALBA	ggaggagggggggggggggggggaggacacggcttctgtgaactaaaccgaggtcatgtaaggaa <u>tttCGTGATGTTGCTTGCAAA</u> aatcgtggcgattttatgtgcgca
ECOMALT	$gatcagcgtcgttttaggtgagttgttaataaagatttggaat \underline{TGTGACACAGTGCAAATT} cagacacataaaaaaacgtcatcgcttgcattagaaaggtttct$
ECOOMPA	gctgacaaaaaagattaaacataccttatacaagactttttttt
ECOTNAA	$\tt ttttttaaacattaaaattottacgtaatttataatotttaaaaaaagcatttaatattgotccccgaacgat{\tt TGTGATTCGATTCACATT}taaacaatttcaga$
ECOUXU1	$cccatgagagtgaaattgt \underline{TGTGATGTGGTTAACCCA} attagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagc$
PBR322	$\tt ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcgg \underline{\tt TGTGAAATACCGCACAGA}tgcgtaaggagaaaataccgcatcaggcgctc$
TRN9CAT	ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaaaTGAGACGTTGATCGGCACg
TDC	$gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatt\underline{TGTGAGTGGTCGCACATA}tcctgtt$

fasta.bioch.virginia.edu/biol4230

E. coli CRP binding sites

CE1CG	$taatgtttgtgctggtttttgtggcatcgggcgagaatagcgcgtggtgtgaaagactgtttt\underline{TTTGATCGTTTTCACAAA} aatggaagtccacagtcttgacaggtgtgtgaaagactgtttt\underline{TTTGATCGTTTTCACAAA} aatggaagtccacagtcttgacaggtgtgtgaaagactgtttttgtgtgtg$
ECOARABOP	$gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgatta \underbrace{\texttt{TTTGCACGGCGTCACACT}}{\texttt{ttgctatgccatagcatttttatccataag}}$
ECOBGLR1	a caa a t c c caa t a a c t t a t t a t t g g a t t g t t a t a t
ECOCRP	$cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgta\overline{\texttt{TGCAAAGGACGTCACATT}}accgtgcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtacagttgatagcagtgcagtacagttgatagcagtgcagtacagttgatagcagtgcagtacagttgatagcagtgcagtacagttgatagcagtgcagtacagttgatagcagtgcagtacagttgatagcagtgcagtacagtgatagcagtgcagtacagttgatagcagtgcagtacagtgatagcagtgcagtacagtgatagcagtgcagtacagtgatagcagtgcagtacagtgatagcagtgcagtacagtgatagcagtgcagtacagtgcagtagcagtgcagtgcagtagcagtgcagtagcagtgcagtagcagtgcagtgcagtgcagtagcagtgcaggtgcagtgcagtgcagtgcaggtgcaggtgcagtgcaggtgggtg$
ECOCYA	$acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagcaagg \underline{\underline{TGTTAAATTGATCACGTT}}ttagaccattttttcgtcgtgaaactaaaaaaaaccacgtgaaactaaaaaaaa$
ECODEOP2	$agtgaatta \underline{\texttt{TTTGAACCAGATCGCATT}} a cagtgatg caa acttg taagtag atttcctta attgtgatgtgtatcga agtgttgtgcgg agtag atgttag aata and a start agtgatgt agtgt agt$
ECOGALE	$\verb gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattcca \verb TGTCACACTTTTCGCATC ttgttatgctatggttatttcataccataagcc $
ECOILVBPR	$\verb gctccggcggggttttttgtta] \hline \texttt{TCTGCAATTCAGTACAAA} \verb acgtgatcaacccctcaattttccctttgctgaaaaattttccattgtctcccctgtaaagctgt $
ECOLAC	$a a cg ca atta a \underline{\texttt{TGFGAGTTAGCTCACTCA}} t t a gg ca cc c ca gg cttta ca ctttat g ct c cg g ct g t a t g t g t g t g g g a t t g t g $
ECOMALBA	acattaccgccaattc <u>TGTAACAGAGATCACAA</u> aagcgacggtggggggggggggggggggggggggggggg
ECOMALBA	$ggaggagggggggggggggggggggggggggggggttctggggactagaaccggggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccggggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccggggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccggggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccggggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccggggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccgggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccgggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccgggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccgggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccgggtcatgtaagggaattt \\ CGTGATGTTGCTTGCAAAaatcgtggcgattttatgtgcgcaaccgggtcatgtaagggaattttatgtgcgcaaccgggtcatgtagggtggtggtggtggtgggtg$
ECOMALT	$gatcagcgtcgttttaggtgagttgttaataaagatttggaat \underline{\texttt{TGTGACACAGTGCAAAATT}} cagacacataaaaaaacgtcatcgcttgcattagaaaggtttct$
ECOOMPA	$gctgacaaaaaagattaaacataccttatacaagactttttttcatatg\underline{ccTGACGGAGTTCACACT}tgtaagttttcaactacgttgtagactttacatcgcc$
ECOTNAA	$\tt ttttttaaaaattottacgtaatttataatotttaaaaaaagcatttaatattgctccccgaacgat {\tt TGTGATTCGATTCACATT} taaacaatttcaga$
ECOUXU1	$\texttt{cccatgagagtgaaattgt} \underline{\texttt{TGTGATGTGGTTAACCCA}} \\ attagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatgtcttaccaaaggtagaacttatacgccatgtcttaccaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgtcttaccaaaggtagaacttatacgccatgtcttaccaaggtagaacttatacgccatgtcttaccaaaggtagaacttatacgccatgtcttaccaaggtagaacttatgtcttaccaaggtagaacttatgtcttaccaaggtagaactt$
PBR322	$\tt ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcgg \underline{\tt TGTGAAATACCGCACAGA}tgcgtaaggagaaaataccgcatcaggcgctc$
TRN9CAT	$\tt ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaa \underline{\tt TGAGACGTTGATCGGCACg}$
TDC	$gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatt \underline{\texttt{TGTGAGTGGTCGCACATA}tcctgtt}$

fasta.bioch.virginia.edu/biol4230

1. rer wint ni fi 1. mort ni fi fi 1. mort ni fi	consensus -L 16 -q 1000 -c0 -pr2 -pt 4 -pf 4				
The Annue to Proceeding from the last cycle if String of 1 (SUG) fragment i (10)	L-mer Width: 16				
The drain cose saved from each cycle; 4 Marrices saved from the last cycle; 4 Harrices saved from the last cycle; 4 Harrices saved from the last cycle; 4 Sequence 1; CEICG fragments; 1-105 for laumber of sequences; 18: Total number of sequences; 18: Total number of sequences fragments; 18: # Observed frequency and occurrence of each letter. # observed occurrence = 572 (letter 1) C 0.182540; observed occurrence = 345 (letter 2) C 0.20895; observed occurrence = 345 (letter 3) Total the sequence fragment i: D prior freq = 0.302646 (CCLE) number information p-value frequence first frequenci) prior freq = 0.302646 (CCLE number information p-value frequence letter 2: C (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence letter 4: T (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence letter 4: T (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence letter 4: T (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence letter 4: T (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence letter 4: T (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence letter 4: T (complement; 0) prior freq = 0.302646 (CCLE number information p-value frequence locantrinks (i.e. BASE 0). DIVIDE VIN(2) = 0.639 TO 5 448 6.3222 -0.3177 0.0577 locantrinks (i.e. BASE 2). BUILDE VIN(2) = 0.639 TO 5 448 6.3222 -0.3177 0.0577 locantrinks (i.e. BASE 2). WILCH WAS USED INFREVIOUS VERSIONS 6 857 9.1660 -38.8902 -2.6284 -1.5171 li 864 8.8973 -68.617 -0.0738 -2.5285 -4.6526 -7.6151 -1.5177 li 854 8.617 -0.0738 -2.5285 -4.6526 -7.6151 -1.5177 li 854 8.617 -60.618 -7.6151 -1.5177 li 854 8.6173 -56.617 -1.6578 -7.6151 -1.5					
Partness seven from the fast option 4 CONSECUS (CCRP) sequence 1: CDC fragments: 1-105 Consecus (CCRP) Stain number of sequences: 18: Consecus (CCRP) Observed frequency and occurrence of each letter. Stain number of sequences: 572 (letter 1) Collars of betrew doccurrence = 572 (letter 2) Consecus (new consecus conseconsecus consecus consecus consecus consecus consecus c	Top Matrices saved from each cycle: 4	0-			
<pre>sequence 1: CEICG fragments: 1-105 rotal number of sequences: 18. Total number of letters in the input sequences = 1800 A 0.302646; observed occurrence = 345 (letter 2) C 0.18250; observed occurrence = 345 (letter 3) T 0.305820; observed occurrence = 345 (letter 3) T 0.305820; observed occurrence = 345 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. Tinformation for the alphabet from the command line. Tinformation (Ontentri 1) prior freq = 0.305820 2 [1 748 6.8222 - 13.5825 [1 0.4475 [1 0.4775 [1 1.1620 2.9492 0.0000 [1 7.3902 [1 0.4775 [1 1.1620 2.9492 0.0000 [1 7.3902 [1 0.4775 [1 1.1678 1.1675 1.16728 [1 -0.3179 [1 0.4775 [1 0.4755 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775 [1 0.4775</pre>	Matrices saved from the fast cycle: 4		nsens	US (CH	(P)
sequence 18: TDC fragments: 1-105 Total number of sequences 18: Total number of sequences 15: # Observed frequency and occurrence of each letter. # number of letters in the input sequences = 1800 A 0.302646; observed occurrence = 572 (letter 1) C 0.182540; observed occurrence = 335 (letter 2) G 0.20895; observed occurrence = 335 (letter 3) T 0.305820; observed occurrence = 578 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. [] * Information for the alphabet from the command line. [] total top adjusted In top [] In expected [] letter 1: A (complement: G) prior freq = 0.302646 CYCLE [] number information p-value [] frequency [] letter 3: G (complement: A) prior freq = 0.302640 CYCLE [] number information p-value [] frequency [] letter 4: T (complement: A) prior freq = 0.302502 2 [] 748 6.8222 -13.5825 [] 0.4475 [] INFORMATION CONTENT IS CALCULATED USING NATURAL 4 [] 832 8.7882 -26.3882 [] -0.3179 [] CONVERT TO BASE 2, WHICH WAS USED INFREVIOUS VERSIONS 6 [] 857 9.1860 -33.8020 [] -2.0624 [] OF THIS PROGRAM. 7 [] 877 9.2088 -45.6680 [] -3.8021 [] -2.0624 [] 0F THIS PROGRAM. 7 [] 877 9.2088 -45.6680 [] -3.8014 [] 8 [] 864 9.1929 -51.3100 [] -4.6251 [] 10 [] 879 9.0644 -63.5596 [] -7.8751 [] 11 [] 864 8.8738 -75.4184 [] -11.977 [] 13 [] 854 8.8738 -75.4184 [] -11.977 [] 14 [] 871 852 8.2955 -88.6578 [] -14.4562 [] 15 [] 852 8.2955 -88.6578 [] -14.4562 [] 16 [] 855 8.1066 -92.6288 [] -1.6224 [] 17 [] 857 7.8793 -95.7075 [] -16.3224 [] 18 [] 936 7.606 -97.6650 [] -16.6684 [] 28	sequence 1: CE1CG fragments: 1-105			- (-	,
Total number of sequence fragments: 18. # Observed frequency and occurrence of each letter. #anumber of letters in the input sequences = 1890 A 0.302646; observed occurrence = 578 (letter 1) C 0.182540; observed occurrence = 345 (letter 2) G 0.208995; observed occurrence = 395 (letter 3) T 0.30520; observed occurrence = 578 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. * Information for the alphabet from the command line. letter 1: A (complement: C) prior freq = 0.182540 * 11 (complement: C) prior freq = 0.182540	sequence 18: TDC fragments: 1-105				
<pre># Observed frequency and occurrence of each letter. #anumber of letters in the input sequences = 1890 A 0.302646; observed occurrence = 572 (letter 1) C 0.182540; observed occurrence = 335 (letter 2) G 0.208995; observed occurrence = 357 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. * Information for the alphabet from the command line. letter 1: A (complement: T) prior freq = 0.302646 CYCLE [] number information p-value [] frequency [] letter 2: C (complement: C) prior freq = 0.302646 CYCLE [] number information p-value [] frequency [] letter 3: G (complement: A) prior freq = 0.305820 2 [] 748 6.8222 - 13.5825 [] 0.4475 [] JINFORMATION CONTENT IS CALCULATED USING NATURAL 4 [] 832 8.7882 - 26.3882 [] -0.3628 [] LOGARTHIMS (i.e. BASE e). DIVIDE BY In(2) = 0.693 TO 5 [] 848 (8.9275 - 31.87828 [] -0.3179 [] CONVERT TO BASE 2, WHICH WAS USED INFREVIOUS VERSIONS 6 [] 857 9.1860 - 38.8902 [] -2.0624 [] JO (J 779 9.0644 - 63.5556 [] -3.8071 [] JINFORMAN. * [] 876 9.1152 -57.2498 [] -5.9577 [] JO (] 879 9.0644 -63.5556 [] -3.8071 [] JI (] 864 8.9373 -68.7012 [] -8.8373 [] JI (] 850 8.6817 -80.0738 [] -1.25275 [] JI (] 854 8.8738 -75.4184 [] -11.5977 [] JI (] 857 7.8733 -55.7184 [] -11.39787 [] JI (] 857 7.8733 -55.7184 [] -11.39787 [] JI (] 857 7.8733 -55.7075 [] -16.2244 [] JI (] 854 8.1066 -92.6288 [] -15.6014 [] JI [] 851 8.1066 -92.6288 [] -15.6014 [] JI [] 857 7.8733 -55.775 [] -16.2244 [] JI [] 851 8.1066 -92.6288 [] -15.6014 [] JI [] 857 7.8733 -95.775 [] -16.2244 [] JI [] 851 8.1066 -92.6288 [] -15.6014 [] JI [] 851 8.1066 -92.6288 [] -15.6014 [] JI [] 857 7.8733 -95.775 [] -16.2244 [] JI [] 857 7.8733 -95.775 [] -16.2244 [] JI [] 936 7.6066 -97.6650 [] -16.6684 [] JI [] 857 7.8573 -7.8733 -95.775 [] -16.2244 [] JI [] 857 7.8573 -7.8733 -95.775 [] -16.2244 [] JI [] 936 7.6066 -97.6650 [] -16.6684 [] JI [] 857 7.8573 -7.873</pre>	Total number of sequence fragments: 18.				
<pre># Observed frequency and occurrence of each letter. #anumber of letters in the input sequences = 1890 A 0.302646; observed occurrence = 572 (letter 1) C 0.182540; observed occurrence = 335 (letter 2) T 0.305820; observed occurrence = 358 (letter 3) T 0.305820; observed occurrence = 578 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. []</pre>					
An 0.302646; observed occurrence = 372 (letter 1) C 0.182540; observed occurrence = 345 (letter 2) G 0.20895; observed occurrence = 335 (letter 3) T 0.305820; observed occurrence = 578 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. []	# Observed frequency and occurrence of each letter.				
C 0.182540; observed occurrence = 345 [letter 2] G 0.20895; observed occurrence = 395 (letter 3) 0.30820; observed occurrence = 578 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. * Information for the alphabet from the command line. letter 1: A (complement: G) prior freq = 0.302646 CYCLE [100000000000000000000000000000000000	A 0.302646; observed occurrence = 572 (letter 1)				
G 0.208995; observed occurrence = 395 (letter 3) T 0.305820; observed occurrence = 578 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. []	C 0.182540; observed occurrence = 345 (letter 2)				
1 0.305820; ODSERVED GEOLTIENCE = 3/8 (letter 4) PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES. [] MATRICES SAVED FOR NEXT CYCLE [] * Information for the alphabet from the command line. [] total top adjusted ln top [] in expected [] letter 1: A (complement: T) prior freq = 0.302646 CYCLE [] number information p-value [] frequency [] letter 2: C (complement: G) prior freq = 0.305820 2 [] 748 6.8222 -13.5825 [] 0.4475 [] letter 4: T (complement: A) prior freq = 0.305820 2 [] 748 6.8222 -13.5825 [] 0.4475 [] IDGARITHMS (i.e. BASE e). DIVIDE BY ln(2) = 0.693 TO 1 849 8.2051 -20.6382 [] -0.3628 [] IOGNENATIO CONTENT IS CALCULATED USING NATURAL 4 [] 832 8.7882 -26.3882 [] -0.3628 [] IOGARITHMS (i.e. BASE e). DIVIDE BY ln(2) = 0.693 TO 5 [] 848 8.9275 -31.8728 [] -0.3179 [] CONVENT TO BASE 2, WHICH WAS USED INPREVIOUS VERSIONS 6 [] 857 9.1860 -38.802 [] -2.6624 [] -0.62377 [] 0F THIS PROGRAM. 8 [] 864 8.973 -66.7012 [] -8.6353 [] 12.5205 [] -1.6251 [] 11 [] 864 8.8738 -75.4184 []	G 0.208995; observed occurrence = 395 (letter 3)				
PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES.	T 0.303820; Observed occurrence = 578 (letter 4)	[]	MATRICES SAVE	FOR NEXT CYCLE	п
* Information for the alphabet from the command line. [] total top adjusted [] top adjusted [] the top [] In expected [] letter 1: A (complement: G) prior freq = 0.302646 CVCLE [] number information []	PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES.	[]			[]
Letter 1: A (complement: T) prior freq = 0.30246 CYCLE [] number information p-value [] frequency [] Letter 2: C (complement: C) prior freq = 0.30240[]	* Information for the alphabet from the command line.	[] total	top adjusted	ln top []	<pre>ln expected []</pre>
letter 3: 6 (complement: C) prior freq = 0.20895 1 (1) 1620 2.9492 0.0000 (1) 7.3902 (1) letter 4: T (complement: A) prior freq = 0.305820 2 (1) 748 6.8222 -13.5825 (1) 0.4475 (1) letter 4: T (complement: A) prior freq = 0.305820 2 (1) 748 6.8222 -13.5825 (1) 0.4475 (1) INFORMATION CONTENT IS CALCULATED USING NATURAL 4 (1) 822 8.7882 -26.3882 (1) -0.3628 (1) LOGARTITMIK (i.e. BASE e). DIVIDE BY ln(2) = 0.693 TO 5 (1) 848 8.9275 -31.8728 (1) -0.3179 (1) CONVERT TO BASE 2, WHICH WAS USED INPREVIOUS VERSIONS 6 (1) 857 9.1860 -38.8902 (1) -2.0624 (1) OF THIS PROGRAM. 7 (1) 877 9.2908 -45.6680 (1) -3.8014 (1) 9 (1) 876 9.1152 -57.2498 (1) -5.9577 (1) 10 (1) 879 9.0644 -63.7596 (1) -7.4751 (1) 11 (1) 864 8.9973 -66.7012 (1) -8.8353 (1) 12 (1) 854 8.6173 -75.4184 (1) -11.5917 (1) 13 (1) 850 8.6617	letter 1: A (complement: T) prior freq = 0.302646 CYCLE	[] number [] -	information	p-vaiue []	irequency []
letter 4: T (complement: A) prior freq = 0.305820 2 [] 748 6.8222 -13.5825 [] 0.4475 [] JINFORMATION CONTENT IS CALCULATED USING NATURAL 4 [] 832 8.7882 -26.3882 [] -0.3628 [] LOGARITHMS (i.e. BASE e). DIVIDE BY ln(2) = 0.693 TO 5 [] 848 8.9275 -31.8728 [] -0.3128 [] CONVERT DASS 2, WHICH WAS USED INPREVIOUS VERSIONS 6 [] 857 9.1860 -38.802 [] -2.0624 [] OF THIS PROGRAM. 7 [] 877 9.2908 -45.6680 [] -3.8014 [] 9 [] 876 9.1152 -57.2498 [] -5.9597 [] 10 [] 879 9.0644 -63.5596 [] -7.8751 [] 11 [] 864 8.8738 -75.4184 [] -11.5917 [] 13 [] 850 8.617 -80.6718 [] -12.5205 [] 14 [] 873 8.2657 -88.678 [] -14.4562 [] 15 [] 852 8.2955 -88.678 [] -14.4562 [] 14 [] 873 8.5267 -86.0712 [] -13.5044 [] 15 [] 852 8.2955 -88.678 [] -14.4562 [] <td>letter 3: G (complement: C) prior freq = 0.208995 1</td> <td>[] 1620</td> <td>2.9492</td> <td>0.0000 []</td> <td>7.3902 []</td>	letter 3: G (complement: C) prior freq = 0.208995 1	[] 1620	2.9492	0.0000 []	7.3902 []
3 1 849 8.2051 -20.1461 0.0577 1 LOGARITEMS (i.e. BASE e). DIVIDE BY ln(2) = 0.693 TO 5 1 848 8.9275 -31.8728 0.03628	letter 4: T (complement: A) prior freq = 0.305820 2	[] 748	6.8222	-13.5825 []	0.4475 []
Incomaniou Contant is chalcharle of interval 1 6 6 6 7 6 7 6 7 6 7 6 7 6 7		[] 849	8.2051	-20.1461 []	0.0577 []
CONVERT TO BASE 2, WHICH WAS USED INPREVIOUS VERSIONS 6 6 857 9.1860 38.8902 1 -2.0624 1 OF THIS PROGRAM. 7 1 877 9.2908 -45.6680 1 -3.8014 1 9 1 876 9.1152 -57.2498 1 -5.9597 1 10 1 879 9.0644 -63.5596 1 -7.4751 1 11 1 864 8.9973 -68.7012 -8.8353 1 12 1 854 8.68173 -75.4184 1 -11.5917 1 13 1 850 8.6817 -80.7012 -8.8353 1 14 1 873 8.5267 -88.0113 1 -13.9878 1 15 1 852 8.2955 -88.6578 1 -14.4552 15 1 852 8.2957 -89.01378 1 -13.9878 15 1 852 8.1066 <td>LOGARITHMS (i.e. BASE e). DIVIDE BY $ln(2) = 0.693$ TO 5</td> <td>[] 848 </td> <td>8.9275</td> <td>-31.8728 []</td> <td>-0.3179 []</td>	LOGARITHMS (i.e. BASE e). DIVIDE BY $ln(2) = 0.693$ TO 5	[] 848	8.9275	-31.8728 []	-0.3179 []
OF THIS PROGRAM. 7 1 877 9.2908 -45.6680 1 -3.8014 1 8 1 864 9.1929 -51.3100 1 -4.6251 1 9 1 876 9.1152 -57.2498 1 -5.9597 1 10 1 879 9.0644 -63.5596 1 -7.8751 1 11 1 864 8.8973 -68.7012 1 -5.8353 1 12 1 864 8.8973 -66.7012 1 -5.8353 1 12 1 854 8.8738 -75.4184 1 -11.5917 1 13 1 850 8.6817 -80.7012 1 -5.8378 1 -12.5205 1 14 1 873 8.5267 -88.6578 1 -13.9978 1 15 1 852 8.2955 -88.6578 1 -14.4562 1 15 1 857 7.8793 -95.7075 1 -16.5024 1 16 <td>CONVERT TO BASE 2, WHICH WAS USED INPREVIOUS VERSIONS 6</td> <td>[] 857 </td> <td>9.1860</td> <td>-38.8902 []</td> <td>-2.0624 []</td>	CONVERT TO BASE 2, WHICH WAS USED INPREVIOUS VERSIONS 6	[] 857	9.1860	-38.8902 []	-2.0624 []
8 1 86 9.1929 -51.3100 1 -4.621 1 9 1 876 9.1152 -57.2498 1 -5.9597 1 10 1 879 9.0644 -63.5596 1 -7.8751 1 11 1 864 8.8973 -68.7012 1 -8.8353 1 12 1 854 8.8738 -76.7012 1 -8.8353 1 12 1 854 8.8738 -75.4144 1 -11.5917 1 13 1 850 8.6817 -80.0738 1 -12.5205 1 14 1 873 8.5267 -86.6378 1 -14.4552 15 1 852 8.2955 -88.6378 1 -14.4552 16 1 855 8.1066 -92.6288 1 -15.6014 1 17 7 857 7.8793 -95.7075 1 -16.6684 1 18 1 936 7.6066 -97.6650 1	OF THIS PROGRAM. 7	[] 877	9.2908	-45.6680 []	-3.8014 []
10 1 879 9.0644 -63.5596 1 -7.7875 1 11 1 864 8.8973 -66.7012 -8.8353 1 12 1 854 8.8738 -75.4184 1 -11.5917 1 13 1 850 8.6817 -80.0738 1 -12.5205 1 14 1 873 8.5267 -85.0113 1 -13.9978 1 15 1 852 8.2955 -88.6578 1 -14.4552 1 16 1 865 8.1066 -92.6288 1 -15.6014 1 17 1 857 7.8793 -95.7075 1 -16.3204 1 18 1 936 7.6066 -97.6650 1 -16.6684 1 18 1 936 7.6066 -97.6650 1 -16.6684 1	8	[] 864 [] 876	9.1929	-51.3100 []	-4.6251 []
11 1 854 8.8973 -68.7012 1 -8.8353 1 12 1 854 8.8738 -75.4184 1 -11.5917 1 13 1 850 8.6817 -80.0738 1 -12.5205 1 14 1 873 8.5267 -85.0113 1 -12.5205 1 15 1 852 8.2955 -88.6578 1 -14.4562 1 16 1 865 8.1066 -92.6288 1 -15.6014 1 17 1 857 7.8793 -95.7075 1 -16.3204 1 18 1 936 7.6066 -97.6650 1 -16.6684 3	10	[] 879	9.0644	-63.5596 []	-7.8751 []
12 [] 854 8.738 -75.4184 [] -11.5917 [] 13 [] 850 8.6817 -80.75.4184 [] -11.5917 [] 14 [] 873 8.6917 -80.0738 [] -12.5205 [] 14 [] 873 8.5267 -85.0113 [] -13.9878 [] 15 [] 852 8.2955 -88.6578 [] -14.4562 [] 16 [] 865 8.1066 -92.6288 [] -15.6014 [] 17 [] 857 7.8793 -95.7075 [] -16.3204 [] 18 [] 936 7.6066 -97.6650 [] -16.6684 [] fasta.bioch.virginia.edu/biol4230 38 38 38	11	[] 864	8.8973	-68.7012 []	-8.8353 []
13 13 13 8.0 8.6817 80.0738 1 -12.5205 1 14 1 873 8.5267 85.013 1 -13.9878 1 15 [1 852 8.2955 88.6578 1 -14.4562 1 16 [1 865 8.1066 92.6288 1 -15.6014 1 17 [1 857 7.8793 95.7075 [1 -16.3204 1 18 [1 936 7.6066 97.6650 [1 -16.6684 1	12	[] 854	8.8738	-75.4184 []	-11.5917 []
15 1 852 8.2955 -88.6578 1 -14.4562 1 16 1 865 8.1066 -92.6288 1 -15.6014 1 17 1 857 7.8793 -95.7075 1 -16.3204 1 18 1 936 7.6066 -97.6650 1 -16.6684 1 fasta.bioch.virginia.edu/biol4230 38 38 38 38	13	[] 850 [] 873	8.681/	-80.0738 []	-12.5205 []
16 [j 865 8.1066 -92.6288 [j -15.6014 [j 17 [] 857 7.8793 -95.7075 [] -16.3204 [] 18 [] 936 7.6066 -97.6650 [] -16.6684 [] fasta.bioch.virginia.edu/biol4230 38	15	[] 852	8.2955	-88.6578 []	-14.4562 []
17 [] 857 7.8793 -95.7075 [] -16.3204 [] 18 [] 936 7.6066 -97.6650 [] -16.6684 [] fasta.bioch.virginia.edu/biol4230 38	16	[] 865	8.1066	-92.6288 []	-15.6014 []
fasta.bioch.virginia.edu/biol4230 38	17	[] 857	7.8793	-95.7075 []	-16.3204 []
fasta.bioch.virginia.edu/biol4230 38	18	[] 936	7.6066	-97.6650 []	-16.6684 []
5	fasta.bioch.virgir	nia.edu/biol42	30		38
					50

consensus -L 16 -q 1000 -c0 -pr2 -pt 4 -pf 4				
L-mer Width: 16		•		
Top Matrices saved from each cycle: 4		Sta	atistics	tor
Matrices Saved from the last cycle: 4				
sequence 1: CEICG fragments: 1-105		C	onsens	sus
Total number of sequences: 18.		-		
Total number of sequence fragments: 18.				
# Observed frequency and occurrence of each letter.				
#anumber of letters in the input sequences = 1890				
A = 0.302646; observed occurrence = 372 (letter 1)				
G 0.208995; observed occurrence = 395 (letter 3)				
T 0.305820; observed occurrence = 578 (letter 4)				
[]		MATRICES SAVE	D FOR NEXT CYCLE	[]
PRIOR FREQUENCIES DETERMINED BY OBSERVED FREQUENCIES.	total	top adjusted	ln top []	ln expected []
letter 1: A (complement: T) prior freg = 0.302646 CYCLE []	number	information	p-value []	frequency []
letter 2: C (complement: G) prior freq = 0.182540[]		İ	[]	[]
<pre>letter 3: G (complement: C) prior freq = 0.208995 1 []</pre>	1620	2.9492	0.0000 []	7.3902 []
letter 4: T (complement: A) prior freq = 0.305820 2 []	748	6.8222	-13.5825 []	0.4475 []
	849	8.2051	-20.1461 []	-0.3628 []
LOGARITHMS (i.e. BASE e), DIVIDE BY $\ln(2) = 0.693$ TO 5 []	848	8.9275	-31.8728 []	-0.3179 []
CONVERT TO BASE 2. WHICH WAS USED INPREVIOUS VERSIONS 6 []	857	9.1860	-38.8902 []	-2.0624 []
OF THIS PROGRAM. 7 []	877	9.2908	-45.6680 []	-3.8014 []
8 []	864	9.1929	-51.3100 []	-4.6251 []
9 []	876	9.1152	-57.2498 []	-5.9597 []
10 []	879	9.0644	-63.5596 []	-7.8751 []
11 []	864	8.8973	-68.7012 []	-8.8353 []
12 []	854	8.8/38	-/5.4184 []	-11.591/[]
13 []	850	0.001/	-80.0738 []	-12.5205 []
14 [] 15 []	852	8.2955	-88.6578 []	-13.5678 []
15 []	865	8.1066	-92.6288 []	-15.6014 []
17 []	857	7.8793	-95.7075 []	-16.3204 []
18 []	936	7.6066	-97.6650 []	-16.6684 []
fasta.bioch.virginia	a.edu/biol4	230		40

Statistical Strategies for Consensus Alignment - EM and Gibbs

- A problem of estimation with hidden data the positions are easy to find if the consensus is known, and the consensus is easy to find if the positions are known
- Start with random positions, build a consensus estimate
- Apply consensus to sequences, assign probability of being a consensus, repeat
- Gibbs is similar, but a target sequence is left out and scanned at each stage

fasta.bioch.virginia.edu/biol4230

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MEME sensitivity (recall) and specificity (precision)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output of MEME+ Analysis of discovered motifs								
name of discovered motif (d) name of known motif (k) (d - k) lipocalin 1 -55057 lipA 1.000 0.357 -55090 77 2 -55057 lipB 0.400 0.200 -55092 35 hth 1 -496332 hth 0.933 0.571 -496346 14 farn 1 -92518 farnL 0.917 0.880 -92525 7 3 -92569 farnA 0.733 0.647 -92566 -3 crp 1 -60547 crp 0.792 0.905 -66590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68	dataset	pass	log likelihood	motif	recall	precision	log likelihood	difference	1
lipocalin 1 -55013 lipA 1.000 0.357 -55090 77 lip 2 -55057 lipB 0.400 0.200 -55092 35 hth 1 -496332 hth 0.933 0.571 -496346 14 farn 1 -92518 farnL 0.917 0.880 -92525 7 2 -92585 farnB 0.615 0.842 -92517 -68 3 -92509 farnA 0.733 0.647 -92566 -3 crp 1 -60547 crp 0.792 0.905 -60590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68	name		of discovered motif (d)	name			of known motif (k)	(d - k)	
1 2 -55557 lipB 0.400 0.200 -55092 35 hth 1 -496332 hth 0.933 0.571 -496346 14 farn 1 -92518 farnL 0.917 0.880 -92525 7 2 -92585 farnB 0.615 0.842 -92517 -68 3 -92569 farnA 0.733 0.647 -92566 -3 crp 1 -60547 crp 0.792 0.905 -60590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68	lipocalin	1	-55013	lipA	1.000	0.357	-55090	77	í
hth 1 -496332 hth 0.933 0.571 -496346 14 farn 1 -92518 farnL 0.917 0.880 -92525 7 2 -92585 farnB 0.615 0.842 -92517 -68 3 -92569 farnA 0.733 0.647 -92566 -3 crp 1 -60547 crp 0.792 0.905 -60590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68 Overview of results of MEME+ on test datasets. MEME+ was run with W set to the values shown d $\beta = 0.01$. The log likelihood values are base-2 logarithms. Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in bioced memories of the Caceed leterational Caceed and the provide and leterat	npoounn	2	-55057	lipB	0.400	0.200	-55092	35	
farm 1 -92518 farnL 0.917 0.880 -92525 7 2 -92585 farnB 0.615 0.842 -92517 -68 3 -92569 farnA 0.733 0.647 -92566 -3 crp 1 -60547 crp 0.792 0.905 -60590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68	hth	1	-496332	hth	0.933	0.571	-496346	14	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	farn	1	-92518	farnL	0.917	0.880	-92525	7	1
3 -92569 farnA 0.733 0.647 -92566 -3 crp 1 -60547 crp 0.792 0.905 -60590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68 Overview of results of MEME+ on test datasets. MEME+ was run with W set to the values shown d $\beta = 0.01$. The log likelihood values are base-2 logarithms. Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in incomposition of the Core of learning of l		2	-92585	farnB	0.615	0.842	-92517	-68	
crp 1 -60547 crp 0.792 0.905 -60590 43 lexa 1 -109155 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.615 -109147 -8 crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68 Overview of results of MEME+ on test datasets. MEME+ was run with W set to the values shown d $\beta = 0.01$. The log likelihood values are base-2 logarithms. Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in bioschemen".		3	-92569	farnA	0.733	0.647	-92566	-3	
lexa1-109155lexa0.8420.615-109147-8crplexa1-169923lexa0.8420.696-169918-52-170048crp0.6670.471-17011668Verview of results of MEME+ on test datasets. MEME+ was run with W set to the values shownd $\beta = 0.01$. The log likelihood values are base-2 logarithms.Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in implement".	crp	1	-60547	crp	0.792	0.905	-60590	43	1
crplexa 1 -169923 lexa 0.842 0.696 -169918 -5 2 -170048 crp 0.667 0.471 -170116 68 Overview of results of MEME+ on test datasets. MEME+ was run with W set to the values shown d $\beta = 0.01$. The log likelihood values are base-2 logarithms. Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in bioscience on laterational Contents on the log likelihood values of the Content of the co	lexa	1	-109155	lexa	0.842	0.615	-109147	-8	1
2 -170048 crp 0.667 0.471 -170116 68 Derive work of results of MEME+ on test datasets. MEME+ was run with W set to the values shown d $\beta = 0.01$. The log likelihood values are base-2 logarithms. Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in biophymere".	crplexa 1 -169923 lexa 0.842 0.696 -169918 -5							1	
Diverview of results of MEME+ on test datasets. MEME+ was run with W set to the values shown d $\beta = 0.01$. The log likelihood values are base-2 logarithms. Bailey and Elkan, (1994) "Fitting a mixture model by expectation maximization to discover motifs in bicard interactional Conference on Intelligent Systems for	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
······································	verview of 1 $\beta = 0.01$. ailey and E	results The <i>lo</i>	of MEME+ on g likelihood value 994) "Fitting a m	test data is are bas ixture mo	sets. ME e-2 logar del by ex	CME+ was r ithms.	un with W set aximization to d	to the value	s shown fs in
			fasta	a.bioch.vii	rginia.ed	u/biol4230			50

(1) Begin w	ith a set of sequences with	(3) Using the probability matrix from the		
random	ly located motifs:	included sequences calculate the		
CE1CG	taat GTTTG tgctggtttttgtggc	probability of each site on the		
ECOARABOR	TORABOP gacaaaaaacgcg TAACA aaagtgtc excluded sequence			
ECOBGLR1	acaaatcccAATAActtaattattg			
ECOCRP	cacaaagcgaaagctatgctAAAAAC	ECOCRP cacaaagcgaaagctatgctaaaac		
ECOCYA	ACGGTgctacacttgtatgtagcgc	(1) Select a site at random using		
ECODEOP2	agtgAATTAtttgaaccagatcgca	weights from the probabilities in (3)		
ECOGALE	gcgcataa AAAAC ggctaaattctt	weights norm the probabilities in (b)		
ECOILVBPF	gctccggcggggttttttgt <u>TATCT</u>	(5) Repeat steps (2) - (4)		
(2) Exclud random from the	e one of the sequences at a, and build a consensus matrix e other motifs			
CE1CG	taat <u>GTTTG</u> tgctggtttttgtggc			
ECOARABOR	gacaaaaacgcg TAACA aaagtgtc			
ECOBGLR1	acaaatccc <u>AATAA</u> cttaattattg			
	-cacaaagcgaaagctatgctaaaac			
ECOCRP				
ECOCRP ECOCYA	ACGGTgctacacttgtatgtagcgc			
ECOCRP ECOCYA ECODEOP2	<u>ACGGT</u> gctacacttgtatgtagcgc agtg <u>AATTA</u> tttgaaccagatcgca			

GIBBS sampler of CRP sites: (1000 iterations)											
16 c	16 columns										
Num	Motifs	: 17									
1,	1	61	actgt	TTTTTTGATCGTTTTCACAAAA	atgga	82	0.93 F CE1C	G			
2,	1	55	attga	TTATTTGCACGGCGTCACACTT	tgcta	76	0.99 F ECOA	RABOP			
з,	1	76	ttaat	AACTGTGAGCATGGTCATATTT	ttatc	97	0.97 F ECOB	GLR1			
4,	1	63	tgcat	GTATGCAAAGGACGTCACATTA	ccgtg	84	0.99 F ECOC	RP			
5,	1	50	cagca	AGGTGTTAAATTGATCACGTTT	tagac	71	0.89 F ECOC	YA			
6,	1	7	gtgaa	TTATTTGAACCAGATCGCATTA	cagtg	28	1.00 F ECOD	EOP2			
7,	1	42	tccac	TAATTTATTCCATGTCACACTT	ttcgc	63	0.72 F ECOG	ALE			
8,	1	20	ttttg	TTATCTGCAATTCAGTACAAAA	cgtga	41	0.74 F ECOI	LVBPR			
9,	1	9	gcaat	TAATGTGAGTTAGCTCACTCAT	taggc	30	1.00 F ECOL	AC			
10,	1	14	gccaa	TTCTGTAACAGAGATCACACAA	agcga	35	1.00 F ECOM	ALBA			
11,	1	61	aggaa	TTTCGTGATGTTGCTTGCAAAA	atcgt	82	0.93 F ECO2	MALB			
12,	1	41	tttgg	AATTGTGACACAGTGCAAATTC	agaca	62	0.97 F ECOM	ALT			
13,	1	48	ttcat	ATGCCTGACGGAGTTCACACTT	gtaag	69	0.98 F ECOO	MPA			
14,	1	71	cgaac	GATTGTGATTCGATTCACATTT	aaaca	92	1.00 F ECOT	NAA			
15,	1	17	gaaat	TGTTGTGATGTGGTTAACCCAA	ttaga	38	0.50 F ECOU	XU1			
16,	1	53	atatg	CGGTGTGAAATACCGCACAGAT	gcgta	74	0.91 F PBR3	22			
18,	1	78	agtta	ATTTGTGAGTGGTCGCACATAT	cctgt	99	1.00 F TDC				

	fasta.bioch.virginia.edu/biol4230										

GIBBS sampler of CRP sites: (5000 iterations)										
16 c	olumns									
Num	Motifs:	19								
1,	1	60	gactg	TTTTTTTGATC	GTTTTCACAAAAA	tggaa	83	0.94 E	CE1CG	
2,	1	54	cattg	ATTATTTGCAC	GGCGTCACACTTT	gctat	77	1.00 H	ECOARABO	Р
з,	1	75	gttaa	TAACTGTGAGC	ATGGTCATATTTT	tatca	98	0.98 E	ECOBGLR1	
4,	1	62	ctgca	TGTATGCAAAG	GACGTCACATTAC	cgtgc	85	0.98 E	ECOCRP	
5,	1	49	tcagc	AAGGTGTTAAA	TTGATCACGTTTT	agacc	72	0.94 E	ECOCYA	
6,	1	6	agtga	ATTATTTGAAC	CAGATCGCATTAC	agtga	29	0.95 E	ECODEOP2	
6,	2	59	ttcct	TAATTGTGATG	TGTATCGAAGTGT	gttgc	82	0.56 E	ECODEOP2	
7,	1	41	ttcca	CTAATTTATTC	CATGTCACACTTT	tcgca	64	0.45 E	ECOGALE	
8,	1	38	agtac	AAAACGTGATC	AACCCCTCAATTT	tccct	61	0.73 E	ECOILVBP	R
9,	1	8	cgcaa	TTAATGTGAGT	TAGCTCACTCATT	aggca	31	1.00 H	ECOLAC	
10,	1	13	cgcca	ATTCTGTAACA	GAGATCACACAAA	gcgac	36	1.00 H	' ECOMALBA	
11,	1	60	aagga	ATTTCGTGATG	TTGCTTGCAAAAA	tcgtg	83	0.97 E	ECO2MALB	
12,	1	40	atttg	GAATTGTGACA	CAGTGCAAATTCA	gacac	63	0.94 E	ECOMALT	
13,	1	47	tttca	TATGCCTGACG	GAGTTCACACTTG	taagt	70	0.95 E	ECOOMPA	
14,	1	70	ccgaa	CGATTGTGATT	CGATTCACATTTA	aacaa	93	1.00 H	ECOTNAA	
15,	1	16	tgaaa	TTGTTGTGATG	TGGTTAACCCAAT	tagaa	39	0.55 E	ECOUXU1	
16,	1	52	catat	GCGGTGTGAAA	TACCGCACAGATG	cgtaa	75	0.88 E	PBR322	
17,	1	4	ctg	TGACGGAAGAT	CACTTCGCAGAAT	aaata	27	0.05 E	TRN9CAT	
18,	1	77	aagtt	AATTTGTGAGT	GGTCGCACATATC	ctgtt	100	1.00 H	TDC	
				*** *****	**** ***					
				tasta.	bioch.virginia.edu/	01014230				55

Finding consensus regions in unaligned sequences

- Some introduction: regulation of transcription
- Looking for functional sites: promoters, regulatory elements, modification sites
- Products of *convergent*, not divergent evolution
- Weak spacing constraints
- · Usually represented as a consensus sequence
- If alignment is given, consensus is obvious
- If consensus is given, alignment is obvious
- Search for consensus and alignment together
- consensus, meme, gibbs

fasta.bioch.virginia.edu/biol4230