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From Genes to Biology:
The Gene Ontology / Pathway enrichment

• Gene Ontology (GO)
– "Ontology" – a directed acyclic graph (DAG)
– molecular function, biological process, cellular 

component
– evidence and evidence codes
– positives and negatives, missing data

• Function/Pathway enrichment analysis
– do sets (subsets) of differentially expressed genes 

reflect a pathway?
– Over representation analysis (ORA)
– functional class scoring – GSEA (gene set 

enrichment analysis)
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Gene Ontology/Enrichment Analysis
• I have a set of differentially expressed genes –

what is happening to the cell?
• Gene Ontology (GO)

– "Ontology" – a directed acyclic graph (DAG)
– molecular function, biological process, cellular 

component
– evidence and evidence codes
– positives and negatives, missing data
– One of many

• Function/Pathway enrichment analysis
– do sets (subsets) of differentially expressed genes 

reflect a pathway?
– Over representation analysis (ORA)
– functional class scoring – GSEA (gene set enrichment 

analysis)
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What is happening to the cell?

• Cellular functions are chemical
• Fundamental biochemical 

processes are lined chemical 
reactions: pathways
– cell division: DNA replication, 

mitosis, segregation
– metabolism: energy, amino-

acids, detoxification
– response to stimuli: signaling

• Some pathways are better 
understood than others

fasta.bioch.virginia.edu/biol4230 5

KEGG pathways (energy metabolism)
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www.genome.jp/kegg/pathway/map/map01100.html
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Differential gene expression on pathways
• Goal: to identify the (known) biological pathways that 

are activated during biological transitions
– from stationary/resting to growth phase
– from normal to cancerous
– from pluripotent to lineage specific
– in response to environmental stimuli

• Requirements:
– list of genes turned on or off / up or down
– (known) relationships between genes/proteins

• Gene Ontology
• shared pathways/processes  KEGG/Reactome

• Measure of over-representation
– hypergeometric (Fisher's Exact test)
– permutation
– GSEA
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GO: The Gene Ontology (geneontology.org)

• Ontology relationships – Directed Acyclic Graph (DAG) of 
relationships
– is-a
– part-of / has-part
– regulates / positively-regulates / negatively-regulates

• Hierarchical – three orthogonal hierarchies
– molecular function
– biological process
– cellular location
– (no sense of time, or developmental stage)

• Curated, with Evidence codes
– experimental
– similarity based (but curated)
– IEA Inferred from Electronic Annotation (no human)

• Absence of activity/process annotation does NOT 
guarantee absence of activity/process

fasta.bioch.virginia.edu/biol4230 8
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The Gene Ontology (GO)

fasta.bioch.virginia.edu/biol4230 9

The Gene Ontology (GO) : trees vs. 
DAGs
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Figure 1 | simple trees versus directed acyclic graphs. Boxes represent nodes and arrows represent edges. a | an example of a 
simple tree, in which each child has only one parent and the edges are directed, that is, there is a source (parent) and a destination 
(child) for each edge. b | A directed acyclic graph (DAG), in which each child can have one or more parents. The node with multiple 
parents is coloured red and the additional edge is coloured grey. c | An example of a node, vesicle fusion, in the biological process 
ontology with multiple parentage. The dashed edges indicate that there are other nodes not shown between the nodes and the root 
node (biological process). A root is a node with no incoming edges, and at least one leaf (also called a sink). A leaf node is a node 
with no outgoing edges, that is, a terminal node with no children (vesicle fusion). Similar to a simple tree, A DAG has directed edges 
and does not have cycles, that is, no path starts and ends at the same node, and will always have at least one root node. The depth 
of a node is the length of the longest path from the root to that node, whereas the height is the length of the longest path from that 
node to a leaf 41. is_a and part_of are types of relationships that link the terms in the GO ontology. More information about the 
relationships between GO terms are found online (An Introduction to the Gene Ontology). 

Rhee, S. Y., et al. Nat Rev Genet 9, 509–515 (2008).
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Gene Ontology Relationships:
is-a, part-of
(regulates/up-regulates/down-regulates)

fasta.bioch.virginia.edu/biol4230 11

geneontology.org/page/ontology-relations

Gene Ontology Relationships:
is-a:
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part-of:

geneontology.org/page/ontology-relations
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Gene Ontology Relationships:
is-a, part-of, has-part, regulates
• is-a : identity (synonyms, reversible)
• part-of : sub-set, not reversible
• has-part: converse of part-of, not reversible
• regulates/up-regulates/down-regulates
• can be combined in logically consistent ways

fasta.bioch.virginia.edu/biol4230 13
geneontology.org/page/ontology-relations

Gene Ontology (GO) hierarchies for 
GSTM1_HUMAN
• Molecular function (chemistry)

– glutathione binding, GST activity, enzyme binding, 
homodimerization, detoxification of nitrogen 
compound

• Biological process (pathway, function)
– xenobiotic metabolic process, glutathione 

derivative biosynthetic process, small molecular 
metabolic process

• Cellular location
– cytosol, cytoplasm

fasta.bioch.virginia.edu/biol4230 14
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Gene Ontology (GO) hierarchies for 
GSTM1_HUMAN

fasta.bioch.virginia.edu/biol4559 15

amigo.geneontology.org/amigo/gene_product/UniProtKB:P09488

biological
process

molecular
function

Gene Ontology (GO) hierarchies for 
GSTM1_HUMAN
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amigo.geneontology.org/amigo/gene_product/UniProtKB:P09488

biological
process

molecular
function
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Gene Ontology (GO) hierarchy for
glutathione binding molecular function

(annotating the ontology, NOT a protein)
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Gene Ontology (GO) hierarchy for
glutathione binding molecular function
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Gene Ontology (GO) hierarchy for
xenobiotic metabolic process Biological Process
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Gene Ontology (GO) hierarchy for
xenobiotic metabolic process Biological Process

fasta.bioch.virginia.edu/biol4230 20
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Gene Ontology (GO) annotations
have evidence codes

fasta.bioch.virginia.edu/biol4230 21

biological
process

molecular
function

Gene Ontology entries have Evidence Codes
geneontology.org/page/guide-go-evidence-codes

Experimental:
• Inferred from Experiment (EXP)
• Inferred from Direct Assay (IDA)
• Inferred from Physical Interaction (IPI)
• Inferred from Mutant Phenotype (IMP)
• Inferred from Genetic Interaction (IGI)
• Inferred from Expression Pattern (IEP)
Literature based:
• Traceable author statement (TAS)

Computational (and someone looked at it)
• Inferred from Sequence or structural Similarity 

(ISS)
• Inferred from Sequence Orthology (ISO)
• Inferred from Sequence Alignment (ISA)
• Inferred from Sequence Model (ISM)
• Inferred from Genomic Context (IGC)
• Inferred from Biological aspect of Ancestor 

(IBA)
• Inferred from Biological aspect of Descendant 

(IBD)
• Inferred from Key Residues (IKR)
• Inferred from Rapid Divergence(IRD)
• Inferred from Reviewed Computational 

Analysis (RCA)
Computational (no human curation)
• Inferred from Electronic Annotation (IEA)

fasta.bioch.virginia.edu/biol4230 22

Evidence codes are not statements of the quality of the annotation. Within each 
evidence code classification, some methods produce annotations of higher 
confidence or greater specificity than other methods… . Thus evidence codes 
cannot be used as a measure of the quality of the annotation.



12

Gene Ontology entries have Evidence Codes

fasta.bioch.virginia.edu/biol4559 23

Gene Ontology coverage, by evidence (2007)

fasta.bioch.virginia.edu/biol4559 24

Rhee, S. Y., et al. Nat Rev Genet 9, 509–515 (2008).
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Gene Ontology coverage, by organism (2007)

fasta.bioch.virginia.edu/biol4559 25
Rhee, S. Y., et al. Nat Rev Genet 9, 509–515 (2008).

§Percentage annotated is determined by dividing the number of genes annotated by total genes.
||Percentage known in genome is determined by multiplying the percentage of experimentally derived 
annotations by the percentage of the genome annotated. This is an approximation of the extent of knowledge 
about the portion of the genome that encodes proteins in an organism with a complete genome sequence that 
is captured by annotation. 

Gene Ontology coverage, by organism (2015)
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Species Source Genes Annots non-IEA Date
P. falciparum GeneDB 2373 6250 6250 3/10/2015
E. coli PortEco 3770 45842 13302 6/26/2014
D. melano. FlyBase 14646 102825 90887 2/16/2015
B. taurus GO/EBI 20466 163368 35893 3/31/2015
G. gallus GO/EBI 12945 101588 15119 3/31/2015
Bos taurus GO/EBI 17349 141466 33661 3/31/2015
C. lupus GO/EBI 16016 123620 19392 3/31/2015
Human GO/EBI 18963 366697 284606 3/31/2015
S. scrofa GO/EBI 16811 121450 22559 3/31/2015
O. sativa Gramene 41140 49282 49282 9/22/2009
Microbio JCVI 56852 142146 142146 3/24/2011
M. musculus MGI 24177 354620 255070 4/2/2015
R. norvegicus RGD 26563 416902 255149 4/4/2015
S. pombe PomBase 5382 39112 34278 03/25/2015
S. cerevisiae SGD 6379 94252 48762 4/4/2015
A. thaliana TAIR 30469 230073 184681 3/31/2015
C. elegans WormBase 20318 134916 67739 9/30/2014
D. rerio ZFIN 19655 167449 48985 4/6/2015

UniPr, no IEA GO/EBI 148533 756506 756506 -
UniProt GO/EBI 29516189 201248286 2114923 -

geneontology.org/page/download-annotations
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Using GO to test functional conservation:
A cautionary tale

NL Nehrt, WT Clark, P Radivojac, MW Hahn (2011) “Testing the ortholog conjecture 
with comparative functional genomic data from mammals” PLOS Comp. Biol.
7:e1002073
A common assumption in comparative genomics is that orthologous genes share 
greater functional similarity than do paralogous genes (the "ortholog conjecture"). 
Many methods used to computationally predict protein function are based on this 
assumption, even though it is largely untested. Here we present the first large-scale 
test of the ortholog conjecture using comparative functional genomic data from 
human and mouse. We use the experimentally derived functions of more than 8,900 
genes, as well as an independent microarray dataset, to directly assess our ability 
to predict function using both orthologs and paralogs. Both datasets show that 
paralogs are often a much better predictor of function than are orthologs, even at 
lower sequence identities. Among paralogs, those found within the same species 
are consistently more functionally similar than those found in a different species. 
We also find that paralogous pairs residing on the same chromosome are more 
functionally similar than those on different chromosomes, perhaps due to higher 
levels of interlocus gene conversion between these pairs. In addition to offering 
implications for the computational prediction of protein function, our results shed 
light on the relationship between sequence divergence and functional divergence. 
We conclude that the most important factor in the evolution of function is not amino 
acid sequence, but rather the cellular context in which proteins act.

fasta.bioch.virginia.edu/biol4230 27

Nehrt et al, (2011)
Testing the ortholog conjecture…

100% identical sequences behave 
differently 35 – 60% of the time

But only in different 
organisms

PLoS Comput Biol. 2011 7:e1002073.
Testing the ortholog conjecture with 
comparative functional genomic data from 
mammals.  Nehrt NL, et al.

PLoS Comput Biol. 2012 8:e1002386
On the Use of Gene Ontology Annotations 
to Assess Functional Similarity among 
Orthologs and Paralogs: A Short Report.
P.D. Thomas et al

fasta.bioch.virginia.edu/biol4230 28
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On the Use of Gene Ontology Annotations to Assess Functional 
Similarity among Orthologs and Paralogs: A Short Report 
Thomas, et al. PLOS Comp. Biol. (2012) 8:e1002386 

A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the 
‘‘functional similarity’’ between two genes that uses only the Gene Ontology (GO) annotations 
directly derived from published experimental results. Applying this metric, the authors concluded 
that paralogous genes within the mouse genome or the human genome are more functionally 
similar on average than orthologous genes between these genomes, an unexpected result with 
broad implications if true. We suggest, based on both theoretical and empirical considerations, 
that this proposed metric should not be interpreted as a functional similarity, and therefore cannot 
be used to support any conclusions about the ‘‘ortholog conjecture’’ (or, more properly, the 
‘‘ortholog functional conservation hypothesis’’). First, we reexamine the case studies presented by 
Nehrt et al. as examples of orthologs with divergent functions, and come to a very different 
conclusion: they actually exemplify how GO annotations for orthologous genes provide 
complementary information about conserved biological functions. We then show that there is a 
global ascertainment bias in the experiment-based GO annotations for human and mouse genes: 
particular types of experiments tend to be performed in different model organisms. We conclude 
that the reported statistical differences in annotations between pairs of orthologous genes do not 
reflect differences in biological function, but rather complementarity in experimental approaches.
Our results underscore two general considerations for researchers proposing novel types of 
analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased 
manner, and subject to an ‘‘open world assumption’’ (absence of an annotation does not imply 
absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis 
should whenever possible be supported by careful, in-depth examination of examples, to help 
ensure the conclusions have a justifiable biological basis. 
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On the Use of Gene Ontology Annotations to Assess Functional 
Similarity among Orthologs and Paralogs: A Short Report 
Thomas, et al. PLOS Comp. Biol. (2012) 8:e1002386 
• MAP4K2 (Map kinase kinase kinase kinase)

– 94% human mouse orthologous sequence identity; 5% orthologous 
functional similarity

– functional similarity within mouse paralogs 69%
– human proteins belong to intracellular protein kinase cascade and 

protein phosphorylation (kinase activity)
– mouse Map4K2 only annotated as vesicle targeting
– both protein are active in the same biological processes, but 

different processes annotated in different organisms
• Nuclear receptors

– THRA/ThrA (thyroid hormone receptor) vs. estrogen receptors
– again, paralogs annotated as more similar, because ligand-specific 

activities not consistent in human/mouse.
• Absence of activity/process annotation does not guarantee 

absence of activity/process.

fasta.bioch.virginia.edu/biol4230 30
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On the Use of Gene Ontology Annotations to Assess Functional 
Similarity among Orthologs and Paralogs: A Short Report 
Thomas, et al. PLOS Comp. Biol. (2012) 8:e1002386 

• Testing the Ortholog Conjecture (Nerht, 2011) is wrong
• By focusing on the "highest quality" annotations 

(experiment based), Nerht discovered that similar 
experiments are done in the same organism (human, 
mouse), but the same experiment is often not done in two 
different organisms (why duplicate effort?)

• Absence of activity/process annotation does not guarantee 
absence of activity/process.

• Very few true negative annotations

fasta.bioch.virginia.edu/biol4230 31

GO: The Gene Ontology (geneontology.org)

• Ontology relationships – Directed Acyclic Graph (DAG) of 
relationships
– is-a
– part-of / has-part
– regulates / positively-regulates / negatively-regulates

• Hierarchical – three orthogonal hierarchies
– molecular function
– biological process
– cellular location
– (no sense of time, or developmental stage)

• Curated, with Evidence codes
– experimental
– similarity based (but curated)
– IEA Inferred from Electronic Annotation (no human)

• Absence of activity/process annotation does NOT 
guarantee absence of activity/process

fasta.bioch.virginia.edu/biol4230 32
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Gene Ontology/Enrichment Analysis
• I have a set of differentially expressed genes –

what is happening to the cell?
• Gene Ontology (GO)

– "Ontology" – a directed acyclic graph (DAG)
– molecular function, biological process, cellular 

component
– evidence and evidence codes
– positives and negatives, missing data
– One of many

• Function/Pathway enrichment analysis
– do sets (subsets) of differentially expressed genes 

reflect a pathway?
– Over representation analysis (ORA)
– functional class scoring – GSEA (gene set enrichment 

analysis)

fasta.bioch.virginia.edu/biol4230 33

From Genes to Pathways:
enrichment analysis

fasta.bioch.virginia.edu/biol4230 34

Khatri, et al. PLoS Comput Biol 8,
e1002375 (2012).
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Enrichment analysis

• Given a set of differentially expressed 
(up/down) genes

• And a set of Gene Ontology or Pathway 
relationships

• Can we use the differentially expressed 
genes to identify the biological 
process/pathway involved

fasta.bioch.virginia.edu/biol4230 35

GO/KEGG/PFAM enrichment
• are my 100's of candidates involved in similar 

process/pathways/functions?
• hypergeometric test for independence:
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What should 'N' be?
• Total number of genes?
• Number of genes expressed?
• Number of genes up? down?
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The significance of differences:
Fisher's Exact Test

fasta.bioch.virginia.edu/biol4230 37

1. Around 1930, Muriel Bristol claimed, in a 
conversation with R. A. Fisher, that she could tell 
when milk was poured into tea, which was much 
preferable to tea being poured into milk.

2. Fisher choose to test this hypothesis by preparing 8 
cups of tea, 4 tea first, 4 milk first, and asking Ms. 
Bristol to identify the 4 cups with tea first.

3. If she has no ability to identify milk first/tea first, then 
one expects her to be right 50% of the time (2 cups).  
But what if she was right for 3 of the 4 cups?

> fisher.test(matrix(c(4,0,0,4),nrow=2),
+             alternative='greater')

Fisher's Exact Test for Count Data
data:  matrix(c(4, 0, 0, 4), nrow = 2)
p-value = 0.01427
alternative hypothesis: true odds ratio is not equal to 1

Enrichment: In group / Not in group

fasta.bioch.virginia.edu/biol4230 38

significant insignificant total
in group: k m-k m

not in
group: n-k N+k-n-m N-m

total: n N-n N

What should 'N' be?
• Total number of genes?
• Number of genes expressed?
• Number of genes up? down?

Khatri, P. & Draghici, S. 
Bioinformatics 21, 3587 (2005).
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Many levels of GO annotation:

fasta.bioch.virginia.edu/biol4230 39

Alexa et al. Bioinformatics 22,
1600–1607 (2006).

Correcting for multiple inheritance

fasta.bioch.virginia.edu/biol4230 40

Alexa et al. Bioinformatics 22,
1600–1607 (2006).
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From Genes to Pathways: enrichment analysis

• over-representation analysis (ORA)
– expected vs.. observed #s of DEGs that share:

• a GO term
• a KEGG/Reactome/IPA pathway
• TF/cis-regulatory promoter elements
• miRNA targets in 3’ UTR
• disease associations (GWAS, etc)

• hundreds of tools for this, differing by 
environment, statistics, database, visualization

• one favorite: GOrilla
– http://cbl-gorilla.cs.technion.ac.il/

fasta.bioch.virginia.edu/biol4230 41

Over Representation Analysis - Reproducibility

fasta.bioch.virginia.edu/biol4230 42

(A) “Stemness” genes. (B) ESC-enriched genes (C) NPC-enriched genes. (D) Overlap of “stemness” 
genes—two types of stem cell (ESC/NPC)-enriched genes

Fortunel et al Science 302, 393–
author reply 393 (2003).

http://cbl-gorilla.cs.technion.ac.il/
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Issues with Over Representation Analysis (ORA)

1. arbitrary significance thresholds for inclusion
2. Differential Expression magnitude/directionality not 

considered
3. sensitive to choice of background “universe”

– all genes, genes on chip, or genes with sufficient 
signal that could possibly be called DEG?

4. correlation between genes ignored
5. correlation/cross-talk between pathways

Functional Class Scoring (FCS) methods fix #1-3

fasta.bioch.virginia.edu/biol4230 43

FCS: Gene Set Enrichment Analysis (GSEA)

• no P value/FDR threshold
• more sensitive than hypergeometric tests
• statistics calculated by permutation testing

Given an a priori defined set of genes S (e.g., genes encoding products in a 
metabolic pathway, located in the same cytogenetic band, or sharing the same 
GO category), the goal of GSEA is to determine whether the members of S are 
randomly distributed throughout list L or primarily found at the top or bottom. 

Subramanian, A. et al. . PNAS
102, 15545–15550 (2005).

fasta.bioch.virginia.edu/biol4230 44
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FCS: Gene Set Enrichment Analysis (GSEA)

Subramanian, A. et al. . PNAS
102, 15545–15550 (2005).

fasta.bioch.virginia.edu/biol4230 45

FCS: Gene Set Enrichment Analysis (GSEA)

Subramanian, A. et al. . PNAS
102, 15545–15550 (2005).

The distribution of three gene sets, from the C2 functional collection, in the list of genes in 
the male female lymphoblastoid cell line example ranked by their correlation with gender: S1, 
a set of chromosome X inactivation genes; S2, a pathway describing vitamin c import into 
neurons; S3, related to chemokine receptors expressed by T helper cells. Shown are plots of 
the running sum for the three gene sets: S1 is significantly enriched in females as expected, 
S2 is randomly distributed and scores poorly, and S3 is not enriched at the top of the list but 
is nonrandom, so it scores well. Arrows show the location of the maximum enrichment score 
and the point where the correlation (signal-to-noise ratio) crosses zero. The new method 
reduces the significance of sets like S3.

fasta.bioch.virginia.edu/biol4230 46
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FCS: Gene Set Enrichment Analysis (GSEA)

Subramanian, A. et al. . PNAS
102, 15545–15550 (2005).

fasta.bioch.virginia.edu/biol4230 47

from genes to pathways:
enrichment analysis

fasta.bioch.virginia.edu/biol4230 48
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Pathway Topology: PT vs ORA
set enrichment vs. pathway impact

SPIA, DEAP, 
CePa, 
PathwayExpressfasta.bioch.virginia.edu/biol4230 49

SPIA – Signaling Pathway Impact Analysis

fasta.bioch.virginia.edu/biol4230 50

Tarca et al. Bioinformatics 25,
75–82 (2009).

The X-axis shows the over-representation 
evidence, while the Y-axis shows the perturbation 
evidence. In the top-left plot, areas 2, 3 and 6 
together will include pathways that meet the over-
representation criterion (PNDE <α). Areas 1, 2 
and 4 together will include pathways that meet the 
perturbation criterion (PPERT <α). Areas 1, 2, 3 
and 5 will include the pathways that meet the 
combined SPIA criteria (PG <α). Note how SPIA 
results are different from a mere logical operation 
between the two criteria (OR would be areas 1, 2, 
3, 4 and 6; AND would be area 2).
Pathway analysis results on the Colorectal 

cancer (top right), LaborC (bottom left) and 
Vessels (bottom right) datasets. Each pathway is 
represented by a point. Pathways above the 
oblique red line are significant at 5% after 
Bonferroni correction, while those above the 
oblique blue line are significant at 5% after FDR 
correction. The vertical and horizontal thresholds 
represent the same corrections for the two types 
of evidence considered individually. Note that for 
the Colorectal cancer dataset (top right), the 
colorectal cancer pathway (ID = 5210) is only 
significant according to the combined evidence 
but not so according to any individual evidence 
PNDE or PPERT.

pNDE: from ORA
pPERT: from perturbation
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SPIA – Signaling Pathway Impact Analysis

fasta.bioch.virginia.edu/biol4230 51

http://www.bioconductor.org/packages/release/bioc/vignettes/SPIA/inst/doc/SPIA.pdf

Figure 3: SPIA evidence plot for the 
colorectal cancer dataset. Each pathway is 
represented by one dot. The pathways at 
the right of the red curve are significant 
after Bonferroni correction of the global p-
values, pG, obtained by combining the 
pPERT and pNDE using the normal 
inversion method. The pathways at the 
right of the blue curve line are significant 
after a FDR correction of the global p-
values, pG.

The green dot shows the KEGG:05210 
colon cancer pathway.  This pathway is 
marginally significant (RDR < 0.05) with 
"normal inversion" combination of PERT 
and NDE, but not significant with Fisher's 
method.

pNDE: from ORA
pPERT: from perturbation

pathway crosstalk yields false positives:

Donato, M. et al. Genome 
Res 23, 1885–1893 (2013)

The results of the ORA analysis in the fat remodeling experiment for the comparison between days 3 and 0, before (A) and after 
(B) correction for crosstalk effects. All P-values are FDR corrected. The lines show the significance thresholds: (blue) 0.01, (yellow) 
0.05. Pathways highlighted in red represent pathways not related to the phenomenon in analysis, while pathways highlighted in
green are those for which we know, with reasonable confidence, are involved in the given phenomenon. The white background 
indicates pathways for which we do not have conclusive information on their involvement (or lack of ) with the phenomenon in 
analysis. (A) The top 20 pathways resulting from classical ORA before correction for crosstalk. The top four pathways are not
related to fat remodeling. (B) The top 20 pathways after correction for crosstalk. Pathways ranked 1, 3, and 5 are modules that are 
functioning independently of the rest of their pathways in this particular condition. Starred pathways are pathways edited by
removing such modules. Note the lack of any obvious false positive above the significance threshold(s). 

fasta.bioch.virginia.edu/biol4230 52



27

Functional analysis: ORA, FC, PT

• Methods assume independence, but pathways 
and GO DAGs are anything but independent
– statistics may be too generous (false positives)
– statistics may be too strict (false negatives)

• What is the right control?
– try different approaches?
– compare to other published datasets?
– do "positive control" on well understood pathways

• All methods need experimental confirmation
– find a drug that blocks the pathway
– ablate a gene (or genes) in the pathway
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Function/Pathway Enrichment
• Function/Pathway enrichment analysis

– do sets (subsets) of differentially expressed genes 
reflect a pathway?

• Over Representation Analyis (ORA)
– Fisher exact test, hypergeometric
– competitive vs. self-contained tests

• Functional Class Scoring (FTS)
– GSEA : Gene Set Enrichment Analysis

• Pathway Topology (PT)
– SPIA : Signaling Pathway Impact Analysis

• What are the right "controls"?
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Gene Ontology/Enrichment Analysis
• Biological function in the cell: Pathways 

(chemistry) 
• Gene Ontology (GO)

– "Ontology" – a directed acyclic graph (DAG)
– molecular function, biological process, cellular 

component
– evidence and evidence codes
– positives and negatives, missing data
– One of many

• Function/Pathway enrichment analysis
– do sets (subsets) of differentially expressed genes 

reflect a pathway?
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