Differential Gene Expression
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+ The basics
— the central dogma
— all cells have the same genome
— but tissues express very different genes
— why?
« Measuring mRNA expression
— the very old days: translation and hybridization
— hybridization to SAGE to microarrays
— RNA-seq
- Differential gene expression
— abundance vs expression differences
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The Central Dogma of Molecular Biology
Molecules for Information transfer, storage, and function

Genetics / Bioinformatics
Template-driven synthesis

RNA protein
Function: info transfer (info transfer)
structure structure
(catalysis) catalysis
translation

<E\ |

4

Size  2-5x10°-bacteria 2000 nt (ave) MRNA

40 kb (400 aa) ave

. 18 x 108 - yeast 2000, 5000nt rRNA
range: 3109 - mammals 100 - 150nt tRNA, 55 50 - 30,000 aa
o .
Abundance: 1 (haploid) >95% rRNA (structural)  structural proteins
R e <5% mRNA enzymes
(copiesi/cell) 2 (diploid) <1-100,000+ signaling molecules
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Cells in different tissues are different
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because they express different proteins from different mMRNAs
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Cells in different tissues are different

human HEPG2 (liver cell line)
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because they express different proteins from different mMRNAs
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Protein abundance and RNA abundance
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FIG. 5. Correlation between protein and mRNA levels for 106 genes in yeast growing at log phase with glucose as a carbon
source. mRNA and protein levels were calculated as described in Materials and Methods. The data represent a population of
genes with protein expression levels visible by silver staining on a 2D gel chosen to include the entire range of molecular weights,
isoelectric focusing points, and staining intensities. The inset shows the low-end portion of the main figure. It contains 69% of the
original data set. The Pearson product moment correlation for the entire data set was 0.935. The correlation for the inset
containing 73 proteins (69%) was only 0.356.
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What determines protein levels?

Nucleotide composition
Codon usage

il S =

NH, Amino acid composition
Structure
Legend:
K Initiation site: [a/glccAUGG QO-NH, N-degron
T miRNA G2 Ribosome
& 5> RNA Binding Proteins Ubiquitin de Sousa et al. Mol.

§§ ¥ Secondary Structures: e.g. IRES, IRE ~ @ESD PEST regions Biosyst. 5, 1512—-1526.

from mRNA levels to promoter activity (transcription factor binding sites)
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Correlation of protein and mRNA levels

R? : Pearson

A. E. coli Rs: Spearman rank B. Yeas

5 5 N=423 s 6 X
23 R?=0.47, R,;=0.68 -; w
2z . 2 )
cs 4 I3 1
23 3
2k 5 88
53 £3
c3 €3
83 2 3 3
83 &
&

£ 41 “E ./

0.5 0 05 1 15 2 -1 05 ] 0s 1 15 2
mMRNA expression levels mRNA expression levels
(molecules/cell, log-scale base 10) (molecules/cell, log-scale base 10)

C. Human D. Across years

& 6 N=511 10 )
2% R2=0.22, R,;=0.46 . £ A O Bacteria
;E 54° : 55 038 A Uni-cellular
53 £g eukaryotes
E ; 4 28 061 A A - o Mu':(i-celtlular

< £ eukaryotes
) . §§ 04 g‘ 3
£3 £ 23 P-value<10-1%°
£3 21 TS @£ 02 o | Praluecto®
“f 4 S . ® 00 o P-value<10

2 25 3 35 4 45 s 1998 2000 2002 2004 2006 2008 2010
mMRNA expression levels . W
(arbitrary units, log-scale base 10) ‘ear of publication
e " de Sousa et al. Mol.
Biosyst. 5, 1512—-1526.
fasta.bioch.virginia.edu/biol4230 9

Correlation of protein and mRNA levels
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Predictive power (%)
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Correlation of protein and mRNA levels
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Figure 4 - Impact of different rates and rate constants on
protein abundance. a, Protein levels are best explained by
translation rates, followed by transcription rates. mRNA and
protein stability is less important (left bar). b, In the replicate
experiment mRNA levels explained 37% of protein levels in Schwanhéusser, B. et
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The yeast genome on a chip

DeRisi et al Science 278, 680—

) N . 686 (1997).
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Yeast genes induced during sporulation
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Chu, S. et al. Science 282,
699-705 (1998).
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Affymetrix GeneChip Overview

Shining a laser light at GeneChip® array causes
tagged DNA fragments that hybridized to glow = o~ -

Actual size of

Millions of DNA strands
bulit up in each location

6.5 million locations on =
each GeneChip® array Actual strand = Hybridized DNA
25 base pairs

Micro Array Features Detection

http://universe-review.ca/l11-50-microarray.jpg
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Affymetrix GeneChip Overview

Prepare Target mRNAs
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master.bioconductor.org/help/course-materials/2009/Seattle Apr09/AffyAtoZ/AffymetrixAtoZSlides.pdf
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MRNA expression — accounting for differences

+ Goals:
— to quantify differences in mMRNA abundance
— ? to quantify amounts of mRNA in cell

+ Data:
— number of cells
— amount of RNA (amount of mMRNA?)

+ Processes:
— make cDNA from mRNA (equal efficiency?)
| = hybridize cDNA to oligonucleotides (GC hybridization
linearity | gjferences)
— does every probe set capture cDNA equally efficiently?
dynamic[ — saturation (too much RNA/cDNA)
range L — detection (too little RNA/cDNA)
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RNA-seq: digital RNA abundance

MRNA Wang et al. Nat Rev
l Genet 10, 57-63 (2009).
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Table 1| Advantages of RNA-Seq compared with other transcriptomics methods

Technology Tiling microarray cDNA or EST sequencing RNA-Seq
Technology specifications

Principle Hybridization Sanger sequencing High-throughput sequencing
Resolution From several to 100 bp Single base Single base
Throughput High Low High
Reliance on genomic sequence Yes No Insome cases
Background noise High Low Low
Application

Simultaneously map transcribed regions and gene expression  Yes Limited for gene expression  Yes

Dynamic range to quantify gene expression level Up to afew-hundredfold  Not practical >8,000-fold
Ability to distinguish different isoforms Limited Yes Yes

Ability to distinguish allelic expression Limited Yes Yes

Practical issues

Required amount of RNA High High Low
Cost for mapping transcriptomes of large genomes High High Relatively low
Wang, 2009 fasta.bioch.virginia.edu/biol4230 19

MRNA expression — accounting for differences

+ Goals:
— to quantify differences in mMRNA abundance
— ? to quantify amounts of mRNA in cell
+ Data:
— number of cells
— amount of RNA (amount of mMRNA?)
+ Processes:
— make cDNA from mRNA (equal efficiency?)
— PCR DNA for sequencing

linearity

dynamic[ — saturation (too much RNA/cDNA)
range L _ detection (too little RNA/cDNA)
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Microarrays vs RNAseq
A B
Liver sample  Kidney sample Illumina study design
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mRNA purification mRNA purification
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Hybridization of each sample to Sequencing each sample
Affymetrix microarrays in 3 using lllumina on 7 lanes
technical replicates across two plates

W i

Analysis to find differentially expressed genes
and comparison between technologies

Kidney
Liver
* Sequenced at a concentration of 1.5 pM

Figure 1. Graphical representation of the study design. (A) Summary of the experimental design. (B)
The lanes in which each sample was sequenced across the two runs. In each run, the control sample
was sequenced in lane 5. Samples were sequenced at two concentrations: 1.5 pM (indicated by an
asterisk) and 3 pM (no asterisk). Marioni et al. Genome Res. 18, 1509-1517 (2008).
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Microarrays vs RNAseq

Comparing fold changes
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Figure 4. Comparison of estimated log, fold changes (liver/kidney)
from lllumina (Y- a)us) and Affymetnx (X axis). We consider only genes
that were i g using both p and genes where the mean
number of counts across lanes was greater than 0 for both the liver and
kidney samples. (Red and green dots) Genes called as differentially ex-
pressed based on the lllumina sequencing data at an FDR of 0.1%, with
a mean number of counts greater than (red) or less than (green) 250
reads in both tissues. (Black dots) Genes not called as differentially ex-
pressed based on the lllumina sequencing data. The set of differentially
expressed genes that show the strongest correlation between the two
technologies seems to be those that are mapped to by many reads (red),
while the correlation is weaker for differentially expressed genes mapped
to by fewer reads (green).

re 5. A Venn diagram summarizing the overlap between genes

from the (right i - The mumber of G £aled by bt tech. Marioni et al. Genome Res. 18, 1509-1517 (2008).

from the (right circle) array. The number of genes called by both tech-
nologies is indicated by the overlap between the two circles. . . i
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How to compare relative mRNA expression?

Limited mRNA levels Normalized Observed Perceived
transcriptional response per cell mRNA levels fold-change = response
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Figure 1. Normalization and Interpretation of Expression Data

Lovén, J. et al. Cell 151, 476-482 (2012).
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How to compare relative mRNA expression?

Figure 1. Normalization and Interpretation of Expression Data (A) Schematic representation of
pattern of change in gene expression when levels of total RNA in the two cells are similar. The
square box represents a perturbation such as increased expression of a gene regulator or a
change in environment or cell state. Red arrows point to target genes affected by the
perturbation, which are represented as circles. Red shading of circles indicates relative
transcriptional increase. (B) Schematic representation of microarray normalization when the
overall levels of mRNA per cell are not changing in two conditions. Relative mRNA levels for
nine different genes (A-1) are indicated along the y axis for condition 1 (black) and condition 2
(orange). The panels, from left to right, depict the actual relationship between mRNA levels for
the two conditions; the effect of median normalization; the calculated fold-changes based on
median normalization, with increased expression represented by red bars above the midline and
decreased expression represented by green bars below the midline; and the perceived
transcriptional response of a limited transcriptional increase in gene expression. (C) Schematic
representation of pattern of change in gene expression when levels of total RNA in the two cells
is different such as in transcriptional amplification, where most genes are expressed at higher
levels. The square box represents a perturbation such as increased expression of a gene
regulator or a change in environment or cell state. Red arrows point to target genes affected by
the perturbation, which are represented as circles. Red shading of circles indicates relative
transcriptional increase. (D) Schematic representation of microarray normalization when the
overall levels of mMRNA per cell are increased in one condition compared to another. Relative
mRNA levels for nine different genes (A-I) are indicated along the y axis for condition 1 (black)
and condition 2 (orange). The panels, from left to right, depict the actual relationship between
mRNA levels for the two conditions; the effect of median normalization; the calculated fold
changes based on median normalization, with increased expression represented by red bars
above the midline and decreased expression represented by green bars below the midline; and
the perceived transcriptional response following transcriptional amplification of gene expression.

Lovén, J. et al. Cell 151, 476482 (2012).
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How to compare relative mRNA expression?

A mRNA levels Spike-in normalized Observed Perceived
per cell mRNA levels fold-change response
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Figure 2. Spike-In Controls, Normalized to Cell Number, Enable Accurate Interpretation of Transcriptional Changes

Lovén, J. et al. Cell 151, 476-482 (2012).
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How to compare relative mRNA expression?

Figure 2. Spike-In Controls, Normalized to Cell Number, Enable Accurate Interpretation of
Transcriptional Changes (A) Schematic representation of microarray normalization when the total level
of mRNA per cell is different as in transcriptional amplification, but spike-in RNAs are used as
standards for normalization. mRNA levels are indicated along the y axis for condition 1 (black) and
condition 2 (orange); individual genes are represented along the x axis. Spike-in standards in the
mRNA for condition 1 are represented by black triangles and spike-in standards in the mRNA for
condition 2 are represented by orange triangles (S1-S3). The panels, from left to right, depict the actual
relationship between mRNA levels for the two conditions; the effect of normalization using the spike-in
standards; the resulting fold changes from condition 1 and condition 2, where increased expression is
represented by red bars above the midline; and the perceived transcriptional response following
transcriptional amplification of gene expression normalized with spike-in RNAs. (B) Heatmap showing
the results of different normalization methods on the interpretation of microarray data. The data
represent fold change of expression in high- Myc versus low-Myc cells. Each line represents data for
individual probes on the microarray. Red indicates increased expression in high-Myc versus low-Myc
cells. Green indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no
change in expression. Left: data using a standard microarray normalization method (MASS5). Right: the
same data, now renormalized by using spike-in standards. (C) Heatmap showing the results of different
normalization methods on the interpretation of RNA-sequencing data. The data represent fold change
of expression in high-Myc versus low-Myc cells. Each line represents data for an individual gene. Red
indicates increased expression in high-Myc versus low-Myc cells. Green indicates decreased
expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: data using
a standard sequencing normalization (reads per kilobase of exon model per million mapped reads).
Right: the same data, now renormalized by using spike-in standards. (D) Heatmap showing the results
of different sample preparation methods on the interpretation of digital quantification data. The data
represent fold change of counts of mMRNA molecules in high-Myc versus low-Myc cells. Each line
represents data for an individual gene. Red indicates increased expression in high-Myc versus low-Myc
cells. Green indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no
change in expression. Left: the results if the quantification is performed with equal amounts of total RNA
for the high-Myc versus low-Myc cells. Right: the results if the quantification is performed with RNA from

equal numbers of high-Myc and low-Myc cells. Lovén, J. et al. Cell 151, 476-482 (2012).
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Differential gene expression

+ mRNA levels affect protein levels
— no mRNA, no protein
— little mRNA, sometimes lots of protein (long half-life)
— lots of mMRNA, often lots of protein

* RNA abundance:
— most RNA is ribosomal RNA (rRNA)

— 10 — 50 mRNA species account for >90% of mRNA
abundance

— sensitive methods detect < 1 molecule/cell (but not with
single cells)
+ which changes matter?
— fold differences
« 100X, from 1:100 molecules/cell?
« 5X, from 50,000 to 250,000 molecules/cell?
— mostly high abundance? mostly low abundance?
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