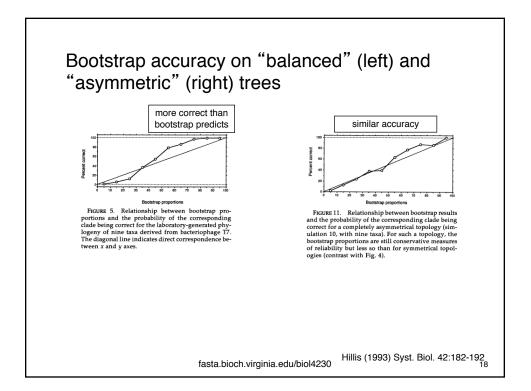
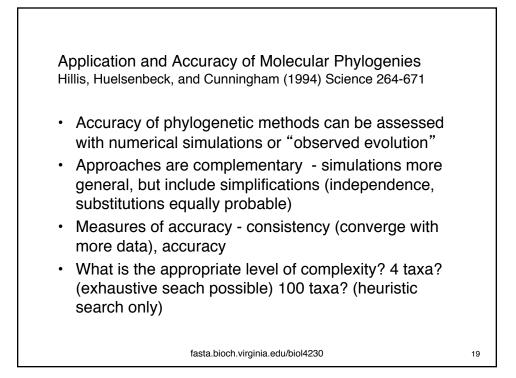
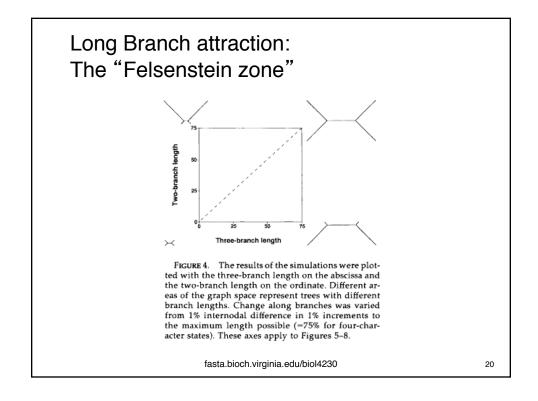
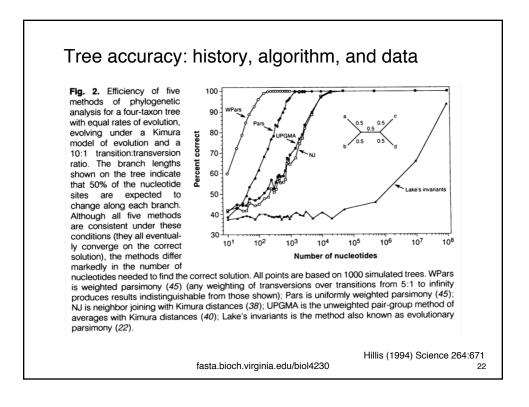
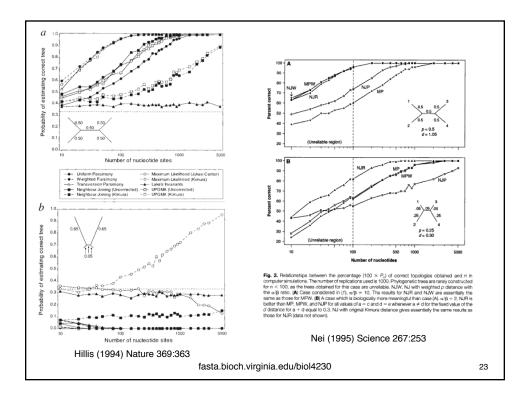

	D								
	Bootstrapping with PHYLIP								
fr	anklin: 1 \$ fseqt	oot -help							
	Standard (Mandat	-	rs:						
	[-sequence]	seqset	(Aligned) sequence set filename and optional						
		-	format, or reference (input USA)						
	[-outfile]	outfile	[*.fseqboot] Phylip seqboot_seq program output file						
Ad	· -	, 1	(* if not always prompted):						
	-categories	propertie	s File of input categories						
	-test	menu	<pre>[b] Choose test (Values: b (Bootstrap); j</pre>						
			(Jackknife); c (Permute species for each						
			character); o (Permute character order); s						
			(Permute within species); r (Rewrite data))						
*	-seqtype	menu	<pre>[d] Output format (Values: d (dna); p</pre>						
			(protein); r (rna))						
*	-blocksize	integer	[1] Block size for bootstraping (Integer 1						
			or more)						
•	-reps	integer	[100] How many replicates (Integer 1 or more)						
*	-seed	integer	[1] Random number seed between 1 and 32767						
		-	(must be odd) (Integer from 1 to 32767)						
Produces 100 randomly sampled datase									
			for dnadist/fitch, dnapars, dnaml						
		fa	sta.bioch.virginia.edu/biol4230	12					
		ia	514.01001.411ginila.004/01017200	12					

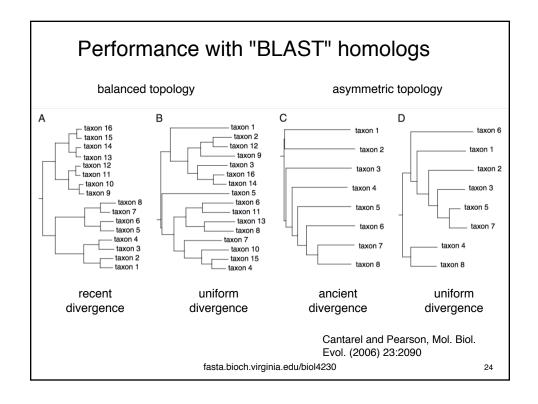

<pre>franklin: 2 \$ fseqboot -sequence gstm.n_phy -outfile gstm.n_boot_phy -seed 54321 -reps 100 Bootstrapped sequences algorithm Warning: integer value out of range 54321 more than (reset to) 32767 bootstrap: true jackknife: false permute: false lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml fasta.bioch.virginia.edu/biol4230</pre>	Bootstrapping with PHYLIP									
<pre>Warning: integer value out of range 54321 more than (reset to) 32767 bootstrap: true jackknife: false permute: false lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>										
bootstrap: true jackknife: false permute: false lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml	Bootstrapped sequences algorithm									
<pre>jackknife: false permute: false lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>	Warning: integer value out of range 54321 more than (reset to) 32767									
<pre>jackknife: false permute: false lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>	bootstrap, true									
permute: false lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml	-									
lockhart: false ild: false justwts: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml	-									
justwis: false completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml	-									
<pre>completed replicate number 10 completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>	ild: false									
<pre>completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>	justwts: false									
<pre>completed replicate number 20 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>	new late to we like to sumbary 10									
 completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml										
<pre>completed replicate number 90 completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml</pre>										
completed replicate number 100 Output written to file "gstm.n_boot_phy" Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml										
Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml										
Done. Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml										
Produces 100 randomly sampled datasets for dnadist/fitch, dnapars, dnaml	Output written to file "gstm.n_boot_phy"									
for dnadist/fitch, dnapars, dnaml	Done.									
fasta.bioch.virginia.edu/biol4230 13		, , , , , , , , , , , , , , , , , , ,								
5	fasta.bioch.virginia.edu/biol4230	13								

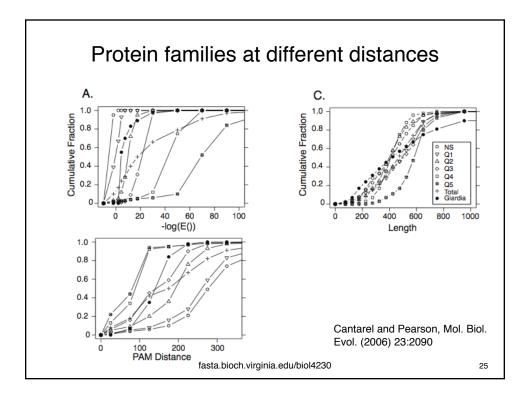

Consense results								
Consensus tree prog	gram, version 3.68							
Species in order:								
-	Sets included in the con	sensus tree						
1. GSTM2 CHK								
2. GSTM3 HUM	Set (species in order)	How many times out of 100.00						
3. GSTM5 RAT								
4. GSTM5 MUS	·····**···	100.00						
5. GSTM1 BOV	·····	100.00						
6. GSTM7 MUS	.***	100.00						
7. GSTM4 RAT	··**·····	100.00						
8. GSTM6 MUS	····	99.00						
9. GSTM4 MUS	····	95.50						
10. GSTMU CRI	·····	94.18						
	·····**** *****	91.10						
11. GSTM1 MUS	****	87.05						
12. GSTM1 RAT	·····	86.17						
13. GSTMU MES	····· **	80.88						
14. GSTM2 RAT	· · · · · · · · * * * · · · · · · ·	78.67						
15. GSTM2 MUS	····· *** ****····	76.31						
16. GSTM2 HUM		58.37						
17. GSTM5 HUM	•••••*	53.48						
18. GSTM4 HUM	***	41.47						
19. GSTM1 HUM								
fasta.bioch.virginia.edu/biol4230								
	asia.bioch.virginia.edu/bioi	4230 14						

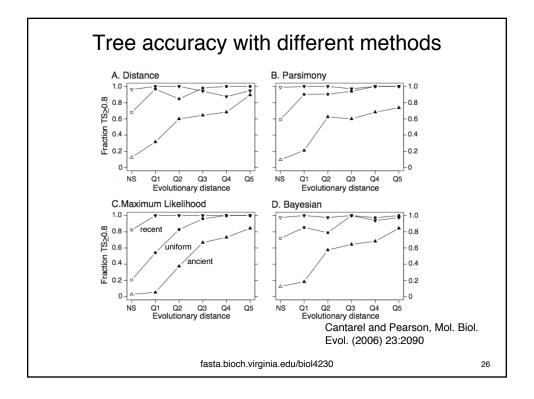


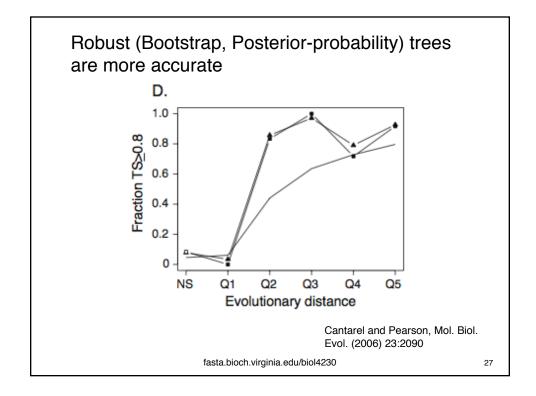


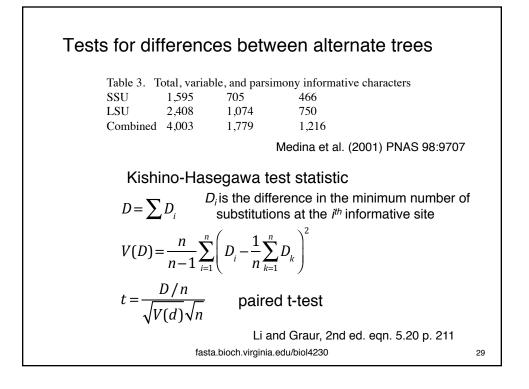


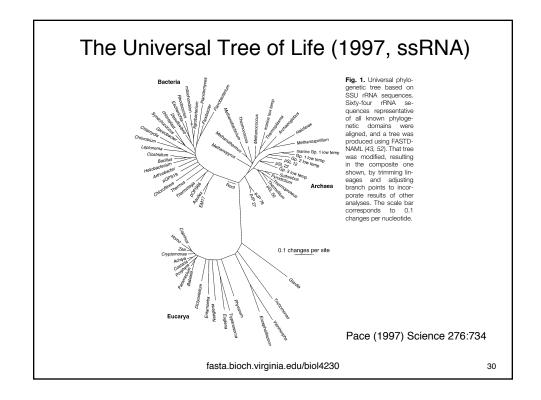


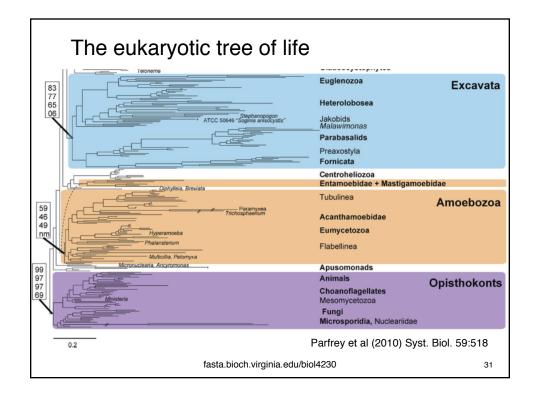


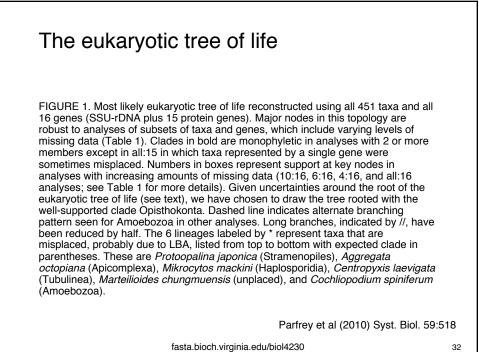


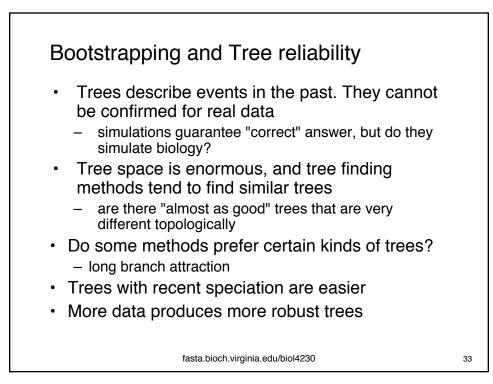











	TABLE V METHODS FOR ASSESSING CONFIDENCE IN RESULTS		
	Method	Comments	Refs."
Methods for assessing confidence limits	Analytical techniques For parsimony procedures Wilcoxon rank-sum test, sign text, winning sites method Confidence limits without clock	Determines whether significant character support exists for one tree relative to a second. Wilcoson rank-sum test allows one to assign mutation different weights (i.e., transversions fa- voring one tree are given greater importance than transi- tions). For six or fever taxa and no ordering as above, Wil- coson rank-sum test reduces to simpler sign test. In winning sites method, biomail test is used to determine whether a greater number of phylogenetically informative positions (serup particular) supports for used to determine whether and the second second second second second second second second second second second second second test and the second s	
	Confidence limits with clock Williams/Goodman confidence limits	cant, a tree must be supported by more than 3/16 of its characters Here, polytomy (star phylogeny) for four taxa is taken as worst-case situation. Thus, probability that a phylogeneti- cally informative site supports a tree is same for all three resolutions of polytomy, 1/3 Similar to approach just described, except that a clock is not saurund. Method is based on a worst-case situation wherefby	
	For evolutionary parsimony	support for correct tree is $\ge 1/3$ and $\le 2/3$ for the two incorrect topologies combined A chi-square or binomial test is used to determine which phy- logenetic invariants deviate significantly from zero and which do not	7
	For maximum likelihood Likelihood ratio test	Ratio of likelihood scores for selected tree and star phylogeny is treated as a chi-square statistic with one degree of freedom. Alternatively, standard normal test of the mean and variance of the difference of their likelihood scores can be used to compare one tree to another	2, 8, 9
	For distance approaches Branch length variances	An internal branch length is considered significant only if its length plus or minus two standard errors exceeds zero	10-12
	esampling techniques	Characters of original data set are randomly sampled and a tree is produced from new matrix. Many resampled matrices are analyzed (usual) >> 1000. Frequency of regulaciano da group is taken as measure of its statistical reliability or, at least, its stability	
	Booststrapping	Characters are randomly sampled with replacement, leading to new data set of same size as original	13. 14
Hillis (1993) Meth. Enz. 224:456-487. fasta.bioch.virg	Jackknifing inia.edu/biol4230	Characters are randomly sampled without replacement, lead- ing to new data set smaller than original one. Jackknifing of taxa is sometimes done instead of characters	

