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Estimating Phylogenies (Evolutionary Trees) II

Tree estimation strategies:
• Parsimony

– ?no model, simply count minimum number of changes
– many sites not "informative"
– how minimum must minimum be?

• Distance
– global "distance" between sequences (all sites informative)
– measured distances underestimate evolutionary change
– Combined algorithm/criterion approaches (UPGMA, NJ) use 

distance
– where distance and parsimony differs

• Statistical (Model based) approaches
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To learn more:
• Pevsner Bioinformatics Chapter 6 pp 179–212
• ** Felsenstein, J. Numerical methods for inferring evolutionary 

trees. Quart. Review of Biology 57, 379–404 (1982).
• Graur and Li (2010) "Fundamentals of Molecular Evolution" 

Sinauer Associates
• Nei (1987) "Molecular Evolutionary Genetics" Columbia Univ. 

Press
• Hillis, Moritz, and Mable (1996) "Molecular Systematics" Sinauer
• Felsenstein (2003) "Inferring Phylogenies" Sinauer
• Felsenstein (2015) "Systematics and Molecular Evolution: Some 

history of numerical methods" Lecture at Molecular Evolution 
Workshop: molevol.mbl.edu/images/e/ed/Felsenstein.15.2.pdf
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Finding the best / Estimating trees
• Most strategies to reconstruct evolutionary 

trees optimize some measure of "goodness"
– Parsimony methods minimize the number of 

mutations
– Distance methods produce trees that match the 

global distances between the sequences
– Maximum likelihood methods seek the tree that 

best fits the data
• What is the "best" method?

– produces accurate trees with the least data?
– converges to the correct tree as data increases?

• We cannot know the "correct" tree
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Finding the best / Estimating trees
• An optimality criterion defines how we 

measure the fit of the data to a given solution
– parsimony / distance / Maximum likelihood

• Tree searching is a separate step; this is how
we search through possible solutions (which  
we then evaluate with the chosen optimality  
criterion)
– Except for Neighbor-Joining and UPGMA, which 

produce a result based on the search strategy
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Advantages
• Parsimony:

– Widely applicable to many discrete data types (often used to combine 
analyses of different data types)  

– Requires no explicit model of evolutionary change   
– Computationally relatively fast  
– Relatively easy interpretation of character change   
– Performs well with many data sets 

• Distance:
– Can be used with pairwise distance data (e.g., non-discrete 

characters)  
– Can incorporate an explicit model of evolution in estimation of pairwise 

distances  
– Computationally relatively fast (especially for single-point estimates)

• Likelihood/Bayesian:
– Fully based on explicit model of evolution
– Most efficient method under widest set of conditions  
– Consistent (converges on correct answer with increasing data, as long 

as assumptions are met)
– Most straight-forward statistical assessment of results; probabilistic 

assessment of ancestral character states  
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Disadvantages:
• Parsimony methods:

– No explicit model of evolution; often less efficient  
– Nonparametic statistical approaches for assessing results often 

have poorly understood properties
– Can provide misleading results under some fairly common 

conditions
– Do not provide probablistic assessment of alternative solutions  

• Distance methods:
– Model of evolution applied locally (to pairs of taxa), rather than 

globally 
– Statistical interpretation not straight-forward
– Can provide misleading results under some fairly common 

conditions (but not as sensitive as parsimony)
– Do not provide probablistic assessment of alternative solutions  

• Likelihood/Bayesian:
– Requires an explicit model of evolution, which may not be 

realistic or available for some data types
– Computationally most intense  
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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The Parsimony Criterion:
• Under the parsimony criterion, the optimal tree 

(the  shortest or minimum length tree) is the one 
that  minimizes the sum of the lengths of all 
characters in terms  of evolutionary steps (a step 
is a change from one character-state to another).    

• For a given tree, find the length of each 
character, and  sum these lengths; this is the tree 
length.  

• The tree with the minimum length is the most 
parsimonious tree.    

• The most parsimonious tree provides the best fit
of the data set under the parsimony criterion.  
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Parismony: ancestral states
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

"InterSunion"
Intersection: 0

Union:  +1

union
union

union

union
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Parsimony – Informative sites

fasta.bioch.virginia.edu/biol4230 9

Graur and Li,
Chap 5, pp 190, 191

Parsimony – Informative sites
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
Character-status summary:

13203 characters are excluded  (selected 1-3000)
Of the remaining 3000 included characters:
All characters are of type 'unord'
All characters have equal weight
2397 characters are constant
431 variable characters are parsimony-uninformative
Number of (included) parsimony-informative characters = 172

Gaps are treated as "missing"
Multistate taxa interpreted as uncertainty

Tree #    1   2   3   4   5   6   7   8   9  10
Length  748 787 749 752 792 787 792 789 789 789
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172/3000 = 5.7%  of data used to build tree
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Parsimony – Informative sites
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
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Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus

Hylobates lar
50 changes

233

89
30

76
79

77
164

1  748 changes

Homo sapiens
Pan troglodytes

Pongo pygmaeus
Gorilla gorilla

Hylobates lar
50 changes

272

42
28

80
75

211
79

2  787 changes

Homo sapiens
Gorilla gorilla

Pan troglodytes
Pongo pygmaeus

Hylobates lar
50 changes

231

88
25

75
106

56
168

3  749 changes

Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus

Hylobates lar
50 changes

230

92
57

22
80

103
168

4  752 changes

Parsimony – Informative sites
Character-status summary:

13203 characters are excluded  (selected 1-3000)
Of the remaining 3000 included characters:
All characters are of type 'unord'
All characters have equal weight
2397 characters are constant
431 variable characters are parsimony-uninformative
Number of (included) parsimony-informative characters = 172

Gaps are treated as "missing"
Multistate taxa interpreted as uncertainty

Tree #    1   2   3   4   5   6   7   8   9  10
Length  748 787 749 752 792 787 792 789 789 789
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172/3000 = 5.7%  of data used to build tree

94.3%  of data "not informative"
95%  identical??
25%  identical??



7

Distance Methods

• Parsimony methods ONLY see informative sites
– often 20%  of the data or less
– uninformative sites have information:

• uninformative because no change (short branches)
• uninformative because lots of change (long 

branches)
• Distance methods look at ALL the data

– but simply construct pairwise distances
– must use "transformed" distance, which requires model
– trees that match pairwise distances need not have a 

possible evolutionary path

fasta.bioch.virginia.edu/biol4230 13

Pairwise Distances
• Distances summarize character differences 

between objects  (terminals, taxa).
• Pairwise distances are computationally quick to 

calculate.  
• Character differences cannot be recovered from 

distances, because  different combinations of 
character states can yield the same  distance (no 
ancestral states).  

• Characters cannot be compared individually, as 
in discrete character analyses.  

• The distances in a matrix are not independent of 
each other, and  errors are often compounded in 
fitting distances to a tree.  
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Distance Methods
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Characters (sites)
Taxa 1 2 3 4 5
one A G C G A
two A G C G T

three C T C G T
four C T C A A

proportional distances
one two three four

one – 0.2 0.6 0.6
two – 0.4 0.8

three – 0.4
four –

DNA transition probabilities – 1 PAM

a

t g

c a

t g

c

0.99

0.008

0.001

0.001

a c g t
a 0.99 0.001 0.008 0.001 = 1.0
c 0.001 0.99 0.001 0.008 = 1.0
g 0.008 0.001 0.99 0.001 = 1.0
t 0.001 0.008 0.001 0.99 = 1.0

fasta.bioch.virginia.edu/biol4230 16
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Matrix multiples

M^2={   PAM 2
{0.980, 0.002, 0.016, 0.002}, 
{0.002, 0.980, 0.002, 0.016}, 
{0.016, 0.002, 0.980, 0.002},
{0.002, 0.016, 0.002, 0.980}}

M^5={ PAM 5
{0.952, 0.005, 0.038, 0.005},
{0.005, 0.951, 0.005, 0.038}, 
{0.038, 0.005, 0.952, 0.005}, 
{0.005, 0.038, 0.005, 0.952}}

M^10={ PAM 10
{0.907, 0.010, 0.073, 0.010}, 
{0.010, 0.907, 0.010, 0.073},
{0.073, 0.010, 0.907, 0.010}, 
{0.010, 0.073, 0.010, 0.907}}

M^100={ PAM 100
{0.499, 0.083, 0.336, 0.083},
{0.083, 0.499, 0.083, 0.336},
{0.336, 0.083, 0.499, 0.083},
{0.083, 0.336, 0.083, 0.499}}

M^1000={ PAM 1000
{0.255, 0.245, 0.255, 0.245}, 
{0.245, 0.255, 0.245, 0.255}, 
{0.255, 0.245, 0.255, 0.245}, 
{0.245, 0.255, 0.245, 0.255}}
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can also be calculated from 
"instantaneous rate matrix Q"

p(t) = exp(t*Q) 
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From differences to distance:
the Jukes-Cantor correction (DNA)
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Distance Methods

fasta.bioch.virginia.edu/biol4230 19

From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Characters (sites)
Taxa 1 2 3 4 5
one A G C G A
two A G C G T

three C T C G T
four C T C A A

proportional distances
one two three four

one – 0.2 0.6 0.6
two – 0.4 0.8

three – 0.4
four –

corrected distances
one two three four

one – 0.21 0.63 0.63
two – 0.43 0.85

three – 0.42
four –

Distance Methods
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

proportional distances
one two three four

one – 0.2 0.6 0.6
two – 0.4 0.8

three – 0.4
four –

(estimated)
corrected distances

one two three four
one – 0.21 0.63 0.63
two – 0.43 0.85

three – 0.42
four –

one two three four 

one - .21 .63 .63 

two - .42 .85 

three - .42 

four - 

0.105%

0.105%

0.21%
0.20%

0.32%

one%

two%

three%

four%

one two three four 

one - .21 .515 .635 

two - .515 .635 

three - .52 

four - 

Find%the%tree%and%branch%lengths%that%result%in%the%
best%match%(using%an%objec7ve%func7on)%between%the%%
corrected%distance%matrix%(dij)%and%the%patris7c%distance%
matrix%(pij)%(the%matrix%of%pathFlength%distances)%

best fit
corrected distances

one two three four
one – 0.21 .515 .635
two – .515 .635

three – .520
four –
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Pairwise distances: Optimality Criteria

• Two commonly used objective functions:
– Fitch-Margoliash
– Minimum Evolution  

• The general strategy is to find a set of 
patristic distances (path-length distances) for 
the branches  that minimize the difference 
between the evolutionary distances and the 
patristic distances. 
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Pairwise distances:

• Fitch-Margoliash (minimize error):
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

i = taxon i
j = taxon j, up to n
d = evolutionary distance (from data)
p = patristic or tree distance (from fit)
ω = weight
Exponent α:  2 = least squares 

1 = absolute difference 

!!
Fit = ω

i , j |di , j − pi , j |α
i=1

j

∑
j=2

n

∑
Common weights:
ωij = 1 
ωij = 1/dij
ωij = 1/d2

ij
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Pairwise distances:

• Minimum evolution (minimize tree length):

1. Use ω=1and α=2 to fit branch lengths
2. Pick the tree that minimizes the sum of the 

branches (Length of tree, similar to parsimony)
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From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

L = li
i=1

2n−3

∑

!!
Fit = ω

i , j |di , j − pi , j |α
i=1

j

∑
j=2

n

∑

Distance:
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
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Uncorrected 1        2        3        4        5
Hylobates -
Human      0.11182        -
Chimp 0.10851  0.05186        -
Gorilla 0.11422  0.06069  0.06136        -
Pongo      0.13056  0.10548  0.10414  0.10901        -

Corrected 1        2        3        4        5
Hylobates  - 0.120941 0.117090 0.123937 0.143651
Human      0.120941 - 0.053528 0.063076 0.113246
Chimp      0.117090 0.053528 - 0.063769 0.111617
Gorilla    0.123937 0.063076 0.063769 - 0.117366
Pongo      0.143651 0.113246 0.111617 0.117366        -
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Distance:
Paup analysis of 3000 sites from primate 

mitochondrial D-loop

Heuristic search settings:
Optimality criterion = distance (unweighted least squares (power=0))
Negative branch lengths allowed, but set to zero for tree-score 

calculation
Distance measure = uncorrected ("p")

3000 characters are included
Starting tree(s) obtained via neighbor-joining
Branch-swapping algorithm: tree-bisection-reconnection (TBR) with 

reconnection limit = 8
Steepest descent option not in effect
Saving 5 best trees found by branch-swapping (on best trees only)

Trees are unrooted
Heuristic search completed
Total number of rearrangements tried = 12
Score of best tree(s) found = 3.9665e-06 (%SD=1.20072, g%SD=0.11499[k=7])
Number of trees retained = 5
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1        2        3        4        5
1 Hylobates lar          -
2 Homo sapiens     0.11182        -
3 Pan troglodytes 0.10851  0.05186        -
4 Gorilla gorilla 0.11422  0.06069  0.06136        -
5 Pongo pygmaeus 0.13056  0.10548  0.10414  0.10901        -

Parsimony – Informative sites
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
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Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus

Hylobates lar
50 changes

233

89
30

76
79

77
164

1  748 changes

Homo sapiens
Pan troglodytes

Pongo pygmaeus
Gorilla gorilla

Hylobates lar
50 changes

272

42
28

80
75

211
79

2  787 changes

Homo sapiens
Gorilla gorilla

Pan troglodytes
Pongo pygmaeus

Hylobates lar
50 changes

231

88
25

75
106

56
168

3  749 changes

Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus

Hylobates lar
50 changes

230

92
57

22
80

103
168

4  752 changes
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Distance:
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
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Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus
Hylobates lar

0.01 substitutions/site

0.068

0.014
0.003

0.027
0.025

0.033
0.063

1  ss= 4E-6

Homo sapiens
Pan troglodytes

Pongo pygmaeus
Gorilla gorilla

Hylobates lar
0.01 substitutions/site

0.077

-0.007
0.009

0.027
0.025

0.070
0.037

2  ss=54E-6

Homo sapiens
Gorilla gorilla

Pan troglodytes
Pongo pygmaeus
Hylobates lar

0.01 substitutions/site

0.068

0.015

0.028
0.033

0.026
0.063

3  ss=15E-6

Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus
Hylobates lar

0.01 substitutions/site

0.068

0.015
0.028

-0.002
0.027

0.034
0.063

4  ss=40E-6

Distance defined by an algorithm
• UPGMA – Unweighted Pair Group Mean Arithmetic

– strongly assumes clock-like tree
• Neighbor-Joining –

fasta.bioch.virginia.edu/biol4230 28

Wikipedia

Li and Graur, 
p. 184, 185 
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Parsimony vs Distance – a data set
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A: gtgttc
B: taccgt
C: gacatc
D: tagcgc

B

A

D

C

C

A

D

B

D

A

C

B2 sites 1 site

A  B  C  D   
A  0  6 3 4
B     0  4  2
C        0  2
D           0

B

A

D

C

C

A

D

B

D

A

C

B

Are there ancestral nodes with correct distances?

gacatc tacagc

Parsimony solutions
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A: gtgttc
B: taccgt
C: gacatc
D: tagcgc

C

A

D

B

gacatc taccgc

gtgttc taccgt

gacatc tagcgc

-tgt--

------

g--at-

-----t

--g---

3

0

1

1

D

A

C

B

gagttc tacttc

gtgttc taccgt

tagcgc gacatc

-t----

t--cg-

g-g---

---cgt

g--a--

1

3

3

2

3

8 total

2

11 total
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Distance solution

fasta.bioch.virginia.edu/biol4230 31

A: gtgttc
B: taccgt
C: gacatc
D: tagcgc

A  B  C  D   
A  0  6 3 4
B     0  4  2
C        0  2
D           0

C

A

D

Bgtgttc taccgt

gacatc tagcgc

1.5

1.5

1.0

1.0

3.5

-0.5

Likelihood/Bayesian methods
• Parsimony methods ONLY see informative sites

– often 20%  of the data or less
– uninformative sites have information:

• uninformative because no change (short branches)
• uninformative because lots of change (long branches)

• Distance methods look at ALL the data
– but simply construct pairwise distances
– must use "transformed" distance, which requires model
– trees that match pairwise distances need not have a 

possible evolutionary path
• Maximum likelihood methods look at ALL the data

– follow evolution along individual sites (columns)
– also requires a model for evolutionary change
– probabilities of ancestors at internal nodes
– much slower

fasta.bioch.virginia.edu/biol4230 32
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Likelihood/Bayesian methods
• Parsimony methods ONLY see informative sites

– often 20%  of the data or less
– uninformative sites have information:

• uninformative because no change (short branches)
• uninformative because lots of change (long branches)

• Distance methods look at ALL the data
– but simply construct pairwise distances
– must use "transformed" distance, which requires model
– trees that match pairwise distances need not have a 

possible evolutionary path
• Maximum likelihood methods look at ALL the data

– follow evolution along individual sites (columns)
– also requires a model for evolutionary change
– probabilities of ancestors at internal nodes
– much slower

fasta.bioch.virginia.edu/biol4230 33

What is Likelihood?
• Have a coin, flip n times, getting h heads. This is the 

data D
• We can explore various hypotheses about the coin, 

which may have explicit and implicit components:
– The coin has a p(H) probability of landing on heads
– The coin has a heads and tails side
– Successive coin flips are independent
– Flipping is fair

• (Maximum) likelihood is a strategy for finding the 
most likely hypothesis, given the data

• It is completely data driven, so HH implies p(H)=1.0, 
but happens 25% of the time with p(H)=0.5

fasta.bioch.virginia.edu/biol4230 34

!!L= p(H |D) From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Coin flipping

• The likelihood (L) is proportional to the probability of 
observing our data, given our hypothesis: 

L(H | D) ∝ P(D | H) 
• The probability of getting the outcome h heads on n flips is 

given by the binomial distribution: 

• The combinatorial term gives the binomial coefficients, for 
the number of ways to get 4 heads in 10 flips

• We will ignore that term and look at a particular sequence 
of H's and T's (more like a specific sequence of 
nucleotides)

fasta.bioch.virginia.edu/biol4230 35

!!
P(h,n|p

h
)= n

h

⎛
⎝⎜

⎞
⎠⎟
(p

h
)h(1− p

h
)n−h

From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Coin flipping

• Let's apply likelihood to specific data:
– Dataset 1: A particular run of tosses

H T T H T T H T T H 

• Assume a hypothesis, ph = 0.5

• This gives a likelihood score of:

fasta.bioch.virginia.edu/biol4230 36

From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

!!L(ph =0.5|obs)= (0.5)
4(1−0.5)6 =0.000976563
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Coin flipping

• What does the likelihood score tell us about the 
likelihood of our hypothesis? In isolation, nothing, 
because the score is dependent on the particular 
data set. The score will get smaller as we collect 
more data (flip the coin more times). 

• Only the relative likelihood scores for various 
hypotheses, evaluated using the same data, are 
useful to us. 

• What are some other models?
L(ph =0.6|obs)=(0.6)4(0.4)6 =0.000530842 
L(ph =0.4|obs)=(0.4)4(0.6)6 =0.001194394

fasta.bioch.virginia.edu/biol4230 37

From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

The likelihood surface

fasta.bioch.virginia.edu/biol4230 38
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Likelihood
• Likelihood (H|D) is proportional to P(D|H) 
• Components of the hypothesis can be explicit 

and implicit 
• Only relative likelihoods are important in 

evaluating hypotheses 
• The point on the likelihood curve that maximizes 

the likelihood score (the MLE) is our best 
estimate given the data at hand 

• Likelihood scores shouldn’t be compared 
between datasets 

• More data lead to more peaked surfaces (i.e., 
better ability to discriminate among hypotheses) 

fasta.bioch.virginia.edu/biol4230 39

From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Likelihood in Phylogenetics

fasta.bioch.virginia.edu/biol4230 41

• In phylogenetics, the data are the observed 
characters (e.g., DNA  sequences) as they 
are distributed across taxa  

• The hypothesis consists of the tree topology, 
a set of specified branch lengths, and an 
explicit model of character evolution.   

• Calculating the likelihood score for a tree 
requires a very large number  of calculations   

From  Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

Likelihood in Phylogenetics
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!!

L= L(1) ×L(2) ×L(3) × ...×L(n) = L(i )
i=1

n

∏

ln(L)= ln(L(1))+ ...+ ln(L(n))= ln(L(i ))
i=1

n

∑

• One tree topology 
16 ancestral states 
at HTU5/HTU6 
(4x4)

• What about branch 
lengths?
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Model-based methods (Likelihood)

• The transition probabilities along each branch are 
calculated from a model of change with time

• Many models, from simple (JC69) to very complex (3 
transition rates, 3 base compositions)
– Jukes-Cantor (JC69)     p(N≠N) = ¾(1-exp(-4d/3))
– Felsenstein81  (F81)
– Kimura80  (K80)
– Hasegawa-Kishino-Yano, 85 (HKY85)

• "d" (distance) = time x rate of change; constant along 
branch for all sites – looking at ALL the data
– allow models with different rates for different codon positions
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Parsimony vs Maximum Likelihood – a data set
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A: taa
B: aat
C: cgg
D: ggc B
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t = transition (A/G,C/T)
T=transversion
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p(t) = p(T) 
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Maximum Likelihood
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
3000 characters are included

Likelihood settings:
Current model:

Data type = nucleotide
Substitution types = 2 (HKY85 variant)

Ti/tv ratio = 2
State frequencies = empirical: A=0.33701 C=0.27103 G=0.17279 T=0.21917
Proportion of invariable sites = none

Rates at variable sites = equal
Model correspondence = HKY85

Number of distinct data patterns under this model = 140
Molecular clock not enforced
Starting branch lengths obtained using Rogers-Swofford approximation method
Branch-length optimization = one-dimensional Newton-Raphson Likelihood 

calculations performed in single precision
Vector processing enabled
Conditional-likelihood rescaling threshold = 1e-20
Using 1 thread on 4 physical (8 logical) processors

Tree             1           2           3           4           5
------------------------------------------------------------------
-ln L     7563.309    7614.123    7566.153    7570.346    7614.714

fasta.bioch.virginia.edu/biol4230 45

Maximum Likelihood
Paup analysis of 3000 sites from primate 

mitochondrial D-loop
Homo sapiens
Pan troglodytes
Gorilla gorilla

Pongo pygmaeus
Hylobates lar

0.05 substitutions/site

0.080

0.024
0.006

0.027
0.027

0.034
0.068

1  -ln(L)=7563

Homo sapiens
Pan troglodytes

Pongo pygmaeus
Gorilla gorilla

Hylobates lar
0.05 substitutions/site

0.096

0.006
0.006

0.027
0.027

0.087
0.033

2  -ln(L)=7624

Homo sapiens
Gorilla gorilla

Pan troglodytes
Pongo pygmaeus
Hylobates lar

0.05 substitutions/site

0.080

0.025
0.006

0.026
0.038

0.024
0.068

3  -ln(L)=7566

Homo sapiens
Pan troglodytes

Gorilla gorilla
Pongo pygmaeus
Hylobates lar

0.05 substitutions/site

0.080

0.026
0.026

0.004
0.027

0.038
0.068

4  -ln(L)=7570
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Criteria for estimating trees
• Parsimony methods ONLY see informative sites

– often 20%  of the data or less
– uninformative sites have information:

• uninformative because no change (short branches)
• uninformative because lots of change (long branches)

• Distance methods look at ALL the data
– but simply construct pairwise distances
– must use "transformed" distance, which requires model
– trees that match pairwise distances need not have a 

possible evolutionary path
• Maximum likelihood methods look at ALL the data

– follow evolution along individual sites (columns)
– also requires a model for evolutionary change
– probabilities of ancestors at internal nodes
– much slower
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