
1

Introduction to Perl Programming

Beginning Perl, Chap 2,3,

Review

• login/logout
• emacs editor
• running perl
• getting help
• literals

2

Literals: strings and numbers
% perl -e ‘print 2 + 2; print “\n”;’
% perl -e ‘print “abc”; print “def\n”;

string “addition” (concatenation operator)
% perl -e ‘print “one two” . “ and three\n”;

mixing numbers and strings:
% perl -e ‘print (2 * 2) . “\n”;’
% perl -e ‘print “2 + 2 = ” . (2 + 2) . “\n”;

decimals and concatenations:
% perl -e ‘print 2.3 + 2 . “\n”;’
% perl -e ‘print 2 . 3 + 2.”\n”;’

Challenge:

• Play with “string math” (what does ‘x’ do
with strings? ‘/’ and ‘-’ ?)

• Print a random number.
• Print 10 random numbers.
• Challenge: print the same randomly

generated number 10 times.

3

Variables – scalars, lists, and hashes

• All programming languages (and programmable calculators)
have places to store information–numbers or strings

• In ‘C’ or pascal, variables must be pre-declared, and look like
any other “words” in the language: int i, j; float mean;

• Perl variables can be pre-declared (they must be pre-declared
with “use strict”) but some programs do not pre-declare
them

• Perl variables must beginwith “$”, “@”, or “%”
• Scalar variables begin with ‘$’ – $i, $j, $mean
• a scalar variable can hold an integer $i=1; real

$pi=3.14159; or string
$sequence=“acgttcggaccctgat”;

• a computer program variable is a place to store something, not
an arbitrary value like in mathematics.

Lists (arrays, vectors)
• Most computer programs manipulate more complex (or structured) data

– lists or vectors, matrices (2D arrays), etc.
• Perl provides a 1-d list or vector data type; more complex 2d or 3d data

are more complex in perl (in contrast with ‘C’, pascal, or Fortran).
• Perl list variables (arrays) begin with ‘@’ : @nt=(‘a’,’c’,’g’,’t’)
• lists (arrays) have individual elements, and a size (or length)
• a list (array) element is always a scalar, and is referred to as: $nt[0],

$nt[1] , etc. Scalars always begin with ‘$’. ‘@’ things are always
lists (never scalar list elements).

• Lists (arrays) begin with element 0 $list[0]
• The index of the last element is $#list; (the length of the list is

$#list+1)

4

Initializing arrays
and manipulating lists (arrays)

• @list=(1,2,3,4,5);
• @list=(1,3.14159,”Pi”);
• @nt=(‘a’,’c’,’g’,’t’);
• @nt=qw(a c g t);
• @purine=qw(a g); @pyrimidine=qw(c t);
• @nt = (@purine, @pyrimidine)=

(‘a’,’g’,’c’,’t’); (Lists “flatten”)
• $a = ‘a’; $c=‘c’…; @nt = ($a, $c, $g, $t);
• ($a,$c,$g,$t) = @nt;
• @lines = split(“\n”,$lots_of_lines);
• @words = split(“ “,$lots_of_words);
• @letters = split(“”,$string);
• @nt = split(“”,”acgt”); but usually its split(//,”acgt”);

Hashes: “associative arrays”

A hash is like a dictionary; it’s a list of unique “words” (called
“keys”), each of which has a “definition” (called a “value”).
Hashes are initialized like arrays:
%hash = (‘key’,’value’,‘one’, 1, ‘two’, 2,
2,’two’,”William Pearson”, “924-2818”);

Perl has a special “comma” called “right arrow” that is
particularly useful for creating hashes; it automatically
“stringifies” the scalar to its left, and emphasizes the
associativity:
%hash = (key=>’value’, one => 1, two => 2,
2=>’two’);

5

Using Hashes

Values in a hash are accessed via its key; this is why
hashes are often called “lookup tables”:
$value = $hash{‘key’};

$num = $hash{‘one’};

$num2 = $hash{two}; # no quotes necessary

$hash{three} = 3; $hash{“William Pearson”};

Arrays of keys and values can be obtained independently
via the ‘keys’ and ‘values’ functions:
@keys = keys %hash;

@vals = values %hash;

Hash “slices”

You can get more than one value out of a hash in one
statement:
($num, $num2) = @hash{‘one’, ‘two’};

($num, $num2) = @hash{qw(one two)};

You can also modify the hash simultaneously:
@hash{qw(three four five)} = (3, 4, 5);

6

Iterating over hashes

Two ways to iterate over all the pairs in a hash:
for my $key (sort keys %hash) {

 my $val = $hash{$key};

 # do something with $key, $val

}

Or:
while(my ($key, $val) = each %hash) {

 # do something with $key, $val

}

Exercises

1. Generate a random DNA sequence (at least
100!nt)

2. Generate a random protein sequence ≥ 200 aa
3. Write a program to translate your random DNA

sequence into protein (make certain it works if
length(DNA)%3 != 0)

