Introduction to BIOC8142 Bioinformatics Overview / Unix for Smarties BIOC 8142 February 11, 2013 Bill Pearson wrp@virginia.edu 4-2818 Jordan 6-057 • Goals of today's lecture: • Introduction to the course - programming for Bioinformatics and Genome Analysis • Topics in Bioinformatics • Introduction to Unix - file systems/editors/bash • Connecting to franklin.achs.virginia.edu • Transferring files

1

UNIX concepts

- Linux (RedHat, Ubuntu, &), AIX, Solaris, & Mac
- shells: sh, bash, csh, tcsh, zsh, ksh, &
- commands: ls, cd, more, cat, echo, &
- flags and arguments: Is I, or: cd \sim
- · inputs and outputs: stdin, stdout, stderr
- · redirecting input/output from/to a file
- · piping output/input between commands
- environmental variables: \$PATH, \$PWD, etc.
- shebang (#!) scripts

Unix file editors

- UNIX newlines are "\n"
 - PC is "\r\n"; Mac is "\r" (sometimes);
- Use a UNIX editor on UNIX files:
 - nano
 - emacs VS. vi/vim
- · When programming, use an IDE
 - eclipse (www.eclipse.org)
 - Komodo Edit (www.activestate.com/komodo-edit)
 - do not use: Word, NotePad/WordPad, TextEdit, etc.
- · every editor has pros and cons, try a few

8

File system navigation

- cd change directory
 - cd ~ change to "home" (~, tilde) directory
- pwd print working directory (current dir.)
- 1s list files
- pushd/popd cd, but remember stack
- find search through filesystem

Unix filenames

- Case matters (always use lowercase):
 - gstm1_human ≠ Gstm1_Human
- Only use letters (lc), numbers, and '_'. (you can use other characters, but then files are difficult to specify/rename/delete)
- "." and "/" are special never use "/"; only use
 "." for suffix (one per filename, not in directories/ folders)

- chmod change permissions on file/dir
 - u/g/o user (you), group, others
 - r/w/x read/write/execute (look inside for directories)
 - chmod +r data.file let others read the file
 - chmod +x program.pl make script "eXecutable"
 - chmod -R go+r . recursively let others read files below "." (your current directory)
- chown change owner of file (rarely used)
- chgrp change group of file (also rare)

other UNIX commands

- builtins list available shell commands
- which/where find path of commands
- time measure how long something take
- echo/tee print/report text
- wget/curl download files
- gzip/gunzip/bunzip/zcat compressed files
- ssh/scp login/copy to/from remote hosts
- history what have I done previously
- man get help

- > redirect stdout into file, replace existing
- >> redirect stdout into file, appending
- | redirect/pipe stdout to stdin of next command

Unix programs rarely ask for file names, they assume you will send to ">stdout"

```
ls -l > file.list
(is file.list in the list of files?)
```

• `backticks` - replace with captured stdout

UNIX editors: learn (at least) one

- nano
 - simple, easy
 - no mouse, use arrow keys
 - how to quit: ctrl-X (all commands at screen bottom)
- vi
 - not so simple to use
 - guaranteed to be on any UNIX machine
 - often the default \$EDITOR
 - how to quit: [colon]q![enter]
- emacs
 - also not so simple to use
 - incredibly versatile, customizable, programmable
 - how to quit: ctrl-X ctrl-C

Homework

- 1. Get an ITS unix account
- 2. On your computer, login to your account on franklin.achs.virginia.edu
 - Windows: download/install SecureCRT
 - Mac: open terminal
 - slogin unix-id@franklin.achs.virginia.edu
- 3. create a file containing your \$PATH echo \$PATH > path.file
- 4. list the contents of the file
- 5. Make a copy of the file
- 6. Make a sub-directory (folder) called "data"
- 7. Move the path.copy file into the data folder
- 8. List the contents of the data folder
- 9. BLAST format sequence libraries are in /data/slib/bl_dbs
 - How many *.psq files are there?
 - How many files start with "swissprot"
 - Look at the "swissprot.nam" file
 - How many different libraries can you find (hint, there is often one .pal file per protein database)

Homework (cont.)		
The The	e blastp program is at: /seqprg/bin/blastp e swissprot database (formatted for BLAST) is at: /data/slib/bl_dbs/swissprot	
1. 2. 3. 4.	Download a protein sequence from the NCBI (www.ncbi.nlm.nih.gov) in FASTA format (try gstM1_HUMAN) Transfer the sequence file from your computer to franklin.achs.virginia.edu using scp (Mac) or SecureFX. Move the transferred file into the "data" folder In the "data" folder, Run a blastp search:	
blas 5. 6. 7. 8. 9.	List the size of the blast output file View the contents of the file Count the lines in the file Run the search producing "tabular" output Use "cut" to isolate the query, subject accessions, bit score, and Expect from the tabular output file	