
2/10/13	

1	

Introduction to BIOC8142  
Bioinformatics Overview / Unix for Smarties!

•  Goals of today’s lecture:"
•  Introduction to the course - programming for

Bioinformatics and Genome Analysis"
•  Topics in Bioinformatics"
•  Introduction to Unix - file systems/editors/bash"
•  Connecting to franklin.achs.virginia.edu"
•  Transferring files"

1"

BIOC 8142  
February 11, 2013 
Bill Pearson wrp@virginia.edu "4-2818 Jordan 6-057"

What should you do to reinforce the
lecture material?"
•  More information on Unix (ignore the history,

learn the filesystems, shell)"
www.ee.surrey.ac.uk/Teaching/Unix/ (tutorials one-six)"

•  More information on Editors (nano)"
mintaka.sdsu.edu/reu/nano.html"

•  More information on Perl"
www.perl.com/pub/2000/10/begperl1.html ""

2"

How will you be graded on this material:"
•  Homework on collab"

2/10/13	

2	

What is bioinformatics?"

Modified	
 from	
 @drewconway	

Bioinformatics and Computational Biology"
•  Computer algorithms, pattern recognition, machine learning,

statistics"
–  Similarity searching/multiple sequence alignment (BLAST)"
–  Mapping genomic reads/assembling reads/genomes"
–  Gene prediction/structure prediction/function prediction"
–  Phylogenetic tree reconstruction, co-evolution, ..."

•  Management of biological data"
–  Databases: Sequence, ENSEMBL, ENTREZ Gene, protein

domains, variation, mutation, protein structure, genome,
taxonomy, active sites, transcription factor binding sites,
ontologies (NAR database issue)"
•  Where is the data"
•  How reliable is it?"

–  Data formats: FASTA, FASTQ, SAM, BAM, BED, GFF, Genbank
flat file, Uniprot, PFAM"

–  Management tools: SQL"
"

2/10/13	

3	

UNIX for Smarties"

• Aaron J. Mackey"
• Bill Pearson"

computing environments"

•  UNIX computing: the command line"
–  "shell" environment, built-in tools"
–  infinitely extensible: download/install tools"

•  most bioinformatics algorithms/tools are implemented
as UNIX command line utilities or libraries"

•  or, write your own algorithms/tools from scratch"
–  highly automatable by scripting (Perl, Python,

etc.)"
–  interoperation between tools only limited by your

ability to glue together input/output formats"
–  almost entirely free access to tools"

•  demo"

2/10/13	

4	

UNIX concepts"

•  Linux (RedHat, Ubuntu, &), AIX, Solaris, &
Mac"

•  shells: sh, bash, csh, tcsh, zsh, ksh, &"
•  commands: ls, cd, more, cat, echo, &"
•  flags and arguments: ls l, or: cd ~"
•  inputs and outputs: stdin, stdout, stderr"
•  redirecting input/output from/to a file"
•  piping output/input between commands"
•  environmental variables: $PATH, $PWD, etc."
•  shebang (#!) scripts"

Unix file editors"
•  UNIX newlines are "\n""

–  PC is "\r\n"; Mac is "\r” (sometimes);"
•  Use a UNIX editor on UNIX files:"

–  nano!
–  emacs vs. vi/vim!

•  When programming, use an IDE"
–  eclipse (www.eclipse.org)"
–  Komodo Edit (www.activestate.com/komodo-edit)"
–  do not use: Word, NotePad/WordPad, TextEdit, etc."

•  every editor has pros and cons, try a few"

8"

2/10/13	

5	

File system navigation"

•  cd – change directory"
– cd ~ - change to "home" (~, tilde) directory"

•  pwd – print working directory (current dir.)"
•  ls – list files"
•  pushd/popd – cd, but remember stack"
•  find – search through filesystem"

Unix filenames"

•  Case matters (always use lowercase):"
– gstm1_human ≠ Gstm1_Human!

•  Only use letters (lc), numbers, and '_'. (you can
use other characters, but then files are difficult
to specify/rename/delete)"

•  "." and "/" are special – never use "/"; only use
"." for suffix (one per filename, not in directories/
folders)"

2/10/13	

6	

File system manipulation"

•  cp – copy files"
– cp file.name . - copy the file to the

current directory"
•  mv – move files"
•  rm – remove files"
•  rmdir – remove directories (must be

empty), or "rm -r -f""
•  touch – make a new, empty file"
•  mkdir – make a new, empty directory"

File Inspection"
•  more – read/browse through a file/stidin"
•  cat – contents to stdout/ concatenate files"
•  head/tail – look at top/bottom of file"
•  od – look at bytes in file (od -c file | more)"
•  sort – sort lines in a file (sort -n – numeric)"
•  cut – extract specific columns"
•  uniq – report unique lines (remove duplicate

accessions)"
•  grep – search/count matching lines"
•  wc – count words/lines/characters"

2/10/13	

7	

Unix Permissions"

•  chmod – change permissions on file/dir"
– u/g/o – user (you), group, others"
– r/w/x – read/write/execute (look inside for

directories)"
– chmod +r data.file – let others read the file"
– chmod +x program.pl – make script

"eXecutable""
– chmod -R go+r . – recursively let others read

files below "." (your current directory)"
•  chown – change owner of file (rarely used)"
•  chgrp – change group of file (also rare)"

Unix host (machine) status"
•  top/ps – what is running, how long, how

much memory"
–  ps -fu wrp – tells what programs wrp is running"

UID PID PPID C STIME TTY TIME CMD!
wrp 21128 21126 0 11:19 ? 00:00:01 sshd: wrp@pts/0!
wrp 21129 21128 0 11:19 pts/0 00:00:00 –tcsh!
wrp 23615 21496 0 14:54 pts/2 00:00:00 ps -fu wrp!

•  kill – force quit a process"
" !kill -9 21129!

–  -3 -> ^C, -9 -> nuclear option"
"

•  df –h - disk space available"
•  du – disk space usage"

!!

2/10/13	

8	

other UNIX commands"

•  builtins - list available shell commands"
•  which/where - find path of commands"
•  time - measure how long something take"
•  echo/tee - print/report text"
•  wget/curl - download files"
•  gzip/gunzip/bunzip/zcat - compressed

files"
•  ssh/scp - login/copy to/from remote hosts"
•  history - what have I done previously"
•  man - get help"

redirection, pipes, replacements"

•  > - redirect stdout into file, replace existing"
•  >> - redirect stdout into file, appending"
•  | - redirect/pipe stdout to stdin of next command"
"
Unix programs rarely ask for file names, they
assume you will send to ">stdout""
"ls –l > file.list!
(is file.list in the list of files?)"

•  `backticks`- replace with captured stdout"

2/10/13	

9	

globs (wildcards)"

•  * wildcard matching"
•  {a,b,c} multiple choice"
•  [a-c], [1-5,9] range/set choice"
•  ^ negation"

•  ls -l *.bam!
•  ls chr[1-23,X,Y].bed!

Environment variables"

•  $USER - who you are"
•  $SHELL - what shell you are running"
•  $PWD - your current working dir"
•  $PATH - where the shell will go to look for

commands"
•  $EDITOR - your default editor"

•  set in your .cshrc/.bashrc, set/setenv!

2/10/13	

10	

UNIX editors: learn (at least) one"

•  nano"
–  simple, easy"
–  no mouse, use arrow keys"
–  how to quit: ctrl-X (all commands at screen bottom)"

•  vi"
–  not so simple to use"
–  guaranteed to be on any UNIX machine"
–  often the default $EDITOR"
–  how to quit: [colon]q![enter]"

•  emacs"
–  also not so simple to use"
–  incredibly versatile, customizable, programmable"
–  how to quit: ctrl-X ctrl-C"

Using emacs"
•  sh>emacs!
•  ^x^c !exit!
•  sh>emacs filename!
•  type some stuff!
•  ^f,^b,^p,^n forward,back,prev, next!
•  ^x^s !save it!
•  ^x^c !exit!
•  sh>!

2/10/13	

11	

Intermediate emacs"
•  sh>emacs random.pl!
•  ^s, ^r search forward, reverse!
•  ^a, ^e start, end of line!
•  esc = M-!
•  M-<, M-> start, end of buffer!
•  M-%!query-replace!
•  ^k !kill-line (and put in kill buffer)!
•  ^k^k !delete line and linefeed (EOL) !
•  ^y !(yank – insert kill buffer)!
•  ^x 2, ^x 1, ^x o (multiple windows)!
•  ^u ! !(repeat number)!
•  ^h !(help,^h-t tutorial, ^h-a apropos)!

alternative scripting languages"
•  Perl"
–  once the mainstay of WWW/CGI programming"
–  long history == lots of reusable packages"

•  PHP"
– mainly limited to dynamic WWW pages"

•  Python"
–  extremely popular"

•  Ruby"
–  compact, expressive"

•  …"

2/10/13	

12	

Homework"
1.  Get an ITS unix account"
2.  On your computer, login to your account on franklin.achs.virginia.edu"

–  Windows: download/install SecureCRT"
–  Mac: open terminal"
" "slogin unix-id@franklin.achs.virginia.edu!

3.  create a file containing your $PATH!
! !echo $PATH > path.file!

4.  list the contents of the file"
5.  Make a copy of the file"
6.  Make a sub-directory (folder) called "data""
7.  Move the path.copy file into the data folder"
8.  List the contents of the data folder"
9.  BLAST format sequence libraries are in /data/slib/bl_dbs"

–  How many *.psq files are there?"
–  How many files start with "swissprot""
–  Look at the "swissprot.nam" file"
–  How many different libraries can you find (hint, there is often

one .pal file per protein database)"

Homework (cont.)"
The blastp program is at: /seqprg/bin/blastp!
The swissprot database (formatted for BLAST) is at:"

" /data/slib/bl_dbs/swissprot!
!
1.  Download a protein sequence from the NCBI (www.ncbi.nlm.nih.gov) in

FASTA format (try GSTM1_HUMAN)"
2.  Transfer the sequence file from your computer to

franklin.achs.virginia.edu using scp (Mac) or SecureFX."
3.  Move the transferred file into the "data" folder"
4.  In the "data" folder, Run a blastp search:"
!
blastp –help!
blastp –db /data/.../swissprot –query gstm1_human >gstm1_human.blast!

"
5.  List the size of the blast output file"
6.  View the contents of the file"
7.  Count the lines in the file"
8.  Run the search producing "tabular" output"
9.  Use "cut" to isolate the query, subject accessions, bit score, and Expect

from the tabular output file!

